Analysis Of The Integration Of a Hybrid Solar and Diesel Power Generation System In The Enggano Island Electricity System Using HOMER Simulation
DOI:
https://doi.org/10.61722/jiem.v3i12.7695Abstract
The electrical system on Enggano Island still relies on diesel power plants (PLTD). Dependence on PLTD results in high operational costs and significant carbon emissions. This study analyzes the potential for integrating solar power plants (PLTS) with diesel power plants (PLTD) in a hybrid system configuration using HOMER Pro software. Input data includes electricity load profiles, solar radiation from NASA POWER, and technical and economic project parameters over a 25-year period. Simulation results indicate that the optimal configuration consists of a 2,316 kWp PLTS, 1,116 battery units, a 1,250 kW inverter, and a 1,000 kW generator, resulting in an LCOE of Rp2,936/kWh and a reduction in fuel consumption of over 30% compared to a diesel-only system. Renewable energy penetration reaches 33.7%, CO2 emissions are reduced by up to 1,500 tons/year, and the IRR reaches 28%. These results demonstrate that the hybrid system is feasible for implementation in 3T regions (Remote, Frontier, and Outer) to support the transition to clean energy.
References
Badan Pusat Statistik. (2023). Statistik Energi Indonesia. BPS RI.
Bhattacharyya, S. C. (2011). Energy Economics: Concepts, Issues, Markets and Governance. Springer.
Diaf, S., Notton, G., Belhamel, M., Haddadi, M., & Louche, A. (2007). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968–987.
Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes (4th ed.). John Wiley & Sons.
Homer Energy. (2023). HOMER Pro User Manual. HOMER Energy LLC.
IRENA. (2022). Renewable Power Generation Costs in 2021. International Renewable Energy Agency.
Kementerian Energi dan Sumber Daya Mineral. (2023). Rencana Umum Ketenagalistrikan Nasional (RUKN). KESDM RI.
Lau, K. Y., Yousof, M. F. M., Arshad, S. N. M., Anwari, M., & Yatim, A. H. M. (2010). Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy, 35(8), 3245–3255.
Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556–565.
Nema, P., Nema, R. K., & Rangnekar, S. (2009). A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renewable and Sustainable Energy Reviews, 13(8), 2096–2103.
Notton, G., Cristofari, C., Mattei, M., & Poggi, P. (2005). Modelling of a photovoltaic power supply system. Solar Energy, 79(3), 286–297.
PLN (Persero). (2022). Statistik PLN 2021. PT PLN (Persero).
PLN (Persero). (2023). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) 2021–2030. PT PLN (Persero).
Rai, G. D. (2013). Non-Conventional Energy Sources (5th ed.). Khanna Publishers.
Renewable Energy Policy Network for the 21st Century (REN21). (2022). Renewables 2022 Global Status Report. REN21 Secretariat.
Sen, R., & Bhattacharyya, S. C. (2014). Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy, 62, 388–398.
Sinha, S., & Chandel, S. S. (2014). Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50, 755–769.
World Bank. (2021). Mini Grids for Half a Billion People: Market Outlook and Handbook for Decision Makers. World Bank Group.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH EKONOMI DAN MANAJEMEN

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










