ANALISIS KINERJA MODEL MACHINE LEARNING UNTUK MENDETEKSI TRANSAKSI FRAUD PADA SISTEM PEMBAYARAN ONLINE
DOI:
https://doi.org/10.61722/jinu.v2i3.4276Keywords:
Data Balancing, Fraud Detection, Machine Learning, Online Payment, XGBoostAbstract
The rapid growth of digital transactions has led to an increase in fraudulent activities within online payment systems. Traditional fraud detection methods based on rule-based systems have limitations in identifying evolving fraud patterns. This study aims to analyze the performance of various Machine Learning (ML) models in detecting fraudulent transactions using the Online Payment Fraud Detection Dataset from Kaggle. The models tested include Logistic Regression, Decision Tree, Random Forest, XGBoost, Support Vector Machine (SVM), and Bidirectional Long Short-Term Memory (BiLSTM). The study also evaluates the impact of data balancing techniques, namely Synthetic Minority Oversampling Technique (SMOTE) and Random Undersampling, on model performance. The results indicate that XGBoost and BiLSTM achieved the highest F1-scores of 88% and 90%, respectively, with SMOTE significantly improving recall rates. These findings suggest that ML can be effectively applied to financial security systems, with XGBoost being more suitable for real-time fraud detection, while BiLSTM excels in identifying complex transaction patterns. Future research should focus on optimizing computational efficiency and exploring Explainable AI techniques to enhance model interpretability.
References
Afridah, R. (2024). Classification and Regression Trees dan Naïve Bayes Berbasis Particle Swarm Optimization untuk Deteksi Fraud Transaksi Kartu. Universitas Malikussaleh. Retrieved from https://rama.unimal.ac.id/id/eprint/5182/
Ariyani, R. (2023). State of the Art Fraud Detection pada Kartu Kredit dengan Menggunakan Pendekatan Algoritma dan Teknik Machine Learning. Jurnal Ilmiah Teknik.
Billah, K. S. (2024). Deteksi Penipuan Kartu Kredit Menggunakan Metode Random Forest. JOISIE (Journal of Information Systems and Intelligent Engineering).
Bhuvaneswar, S., Avyay, B., & Kavitha, M. S. (2025). A Supervised ML Algorithm for Detecting and Predicting Fraud Credit Card Transactions. Semanticscholar. Retrieved from https://pdfs.semanticscholar.org/0e1b/f66caa29b1723dc621d2f510670b1e1f4939.pdf
Dastidar, K. G. (2025). Using Context for Credit Card Fraud Detection. Opus4. Retrieved from https://opus4.kobv.de/opus4-uni-passau/files/1556/Dissertation_GhoshDastidar.pdf
Editya, A. S., Alamin, M. M., & Pramana, A. L. (2025). Fraud Classification in Online Payments Using Supervised Machine Learning Algorithms. Tecnoscientifica. Retrieved from https://tecnoscientifica.com/journal/gisa/article/view/552
Janardhanan, H. (2025). AI-Powered Fraud Detection: Leveraging Machine Learning to Combat Financial Crimes. ResearchGate. Retrieved from https://www.researchgate.net/profile/Harish-Janardhanan/publication/389778076_AI-Powered_Fraud_Detection_Leveraging_Machine_Learning_to_Combat_Financial_Crimes/links/67d1a044cc055043ce70dd60/AI-Powered-Fraud-Detection-Leveraging-Machine-Learning-to-Combat-Financial-Crimes.pdf
Kurniawan, I. B. (2024). Deteksi Penipuan Transaksi Kartu Kredit Menggunakan Model BiLSTM dan Algoritma PSO. Universitas Sebelas Maret. Retrieved from https://digilib.uns.ac.id/dokumen/detail/119142/
Maity, A., Banerjee, A., & Gupta, S. K. S. (2025). Detection of Unknown-Unknowns in Human-in-Loop Human-in-Plant Safety Critical Systems. IEEE Transactions. Retrieved from https://ieeexplore.ieee.org/abstract/document/10929042/
Maghfiroh, A., Findawati, Y., & Indahyanti, U. (2023). Klasifikasi Penipuan pada Rekening Bank menggunakan Pendekatan Ensemble Learning. Academia.edu.
Polu, O. R. (2025). AI-Based Fake Transaction Detection in Credit Card Payments. Academia.edu. Retrieved from https://www.academia.edu/download/121670256/SR23126171341.pdf
Putra, R. A. (2024). Penerapan Machine Learning dalam Deteksi Kecurangan pada Transaksi Keuangan Online. Jurnal Dunia Data. Retrieved from http://www.pustakailmu.id/index.php/duniadata/article/view/87
Reyhan, M., & Ahmad, D. R. (2024). Penggunaan Data Analisis dan Big Data dalam Strategi Pengambilan Keputusan Keuangan. Jurnal Akuntansi dan Manajemen Keuangan. Retrieved from https://economics.pubmedia.id/index.php/jampk/article/view/540
Shaankari, S., Aishwarya, M., Vaishnavi, B., & Naaz, S. H. (2025). Online Fraud Detection: A Decision Tree Approach. ResearchGate. Retrieved from https://www.researchgate.net/profile/Aishwarya-Macharla/publication/389989297_Online_Fraud_Detection_A_Decision_Tree_Approach/links/67dcef8035f7044c924e0340/Online-Fraud-Detection-A-Decision-Tree-Approach.pdf
Statista. (2023). Digital Fraud Report: Global Financial Crime Trends. Retrieved from https://www.statista.com/
Takahashi, R., Nishimura, H., & Matsuda, K. (2025). A Graph Neural Network Model for Financial Fraud Prevention. SPRC Open. Retrieved from https://sprcopen.org/FAIR/article/view/140
Vakil, S. M. R., & Ahmadirad, J. (2025). Analysis of Fraud Detection Solutions Using Machine Learning (DSR Approach). Journal of Next-Generation Research. Retrieved from https://jngr5.com/index.php/journal-of-next-generation-resea/article/view/101
Werdiningsih, I., Purwanti, E., & Aditya, G. R. W. (2024). Identifikasi Penipuan Kartu Kredit Pada Transaksi Ilegal Menggunakan Algoritma Random Forest dan Decision Tree. Sistem Informasi dan Keamanan Data.
XGBClassifier Team. (2024). Exploring the Potential of Federated Learning to Empower Credit Card Fraudulent Transaction Detection with Deep Learning Techniques. ResearchGate.
Zamachsari, F., & Puspitasari, N. (2021). Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH NUSANTARA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.