PERBANDINGAN PERFORMA ALGORITMA NAIVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN KOMENTAR YOUTUBE TERHADAP INDUSTRI ESPORTS DI INDONESIA
DOI:
https://doi.org/10.61722/jinu.v2i6.6753Keywords:
Esports, Latent Dirichlet Allocation, Naive Bayes, Sentiment Analysis, Support Vector MachineAbstract
The esports industry in Indonesia is rapidly growing and gaining significant attention on social media, particularly YouTube, where comments reflect public perceptions. This study compares the performance of Naive Bayes and Support Vector Machine (SVM) in classifying sentiments from YouTube comments and explores key themes using Latent Dirichlet Allocation (LDA). Data were collected via the YouTube Data API v3, labeled with TextBlob and manually verified into positive, negative, and neutral categories. After preprocessing and TF-IDF representation, class imbalance was handled with SMOTE, and models were trained and evaluated using accuracy, precision, recall, F1-score, and confusion matrix. Results indicate that Naive Bayes achieved 73.85% accuracy with an F1-score of 0.71, while SVM slightly outperformed with 73.97% accuracy and the same F1-score. SVM showed better consistency in classifying negative and neutral comments, whereas Naive Bayes was more effective for positive ones. LDA revealed dominant discussion topics such as appreciation, enthusiasm, community interaction, criticism, and support for esports development. These findings highlight SVM’s superior overall performance and the value of LDA in uncovering public discourse, providing both academic contribution and practical insights for the esports industry in understanding public sentiment.
References
F. Febriansyah, V. Octaviani, and S. Sari, “Pengalaman Komunikasi Atlet E-Sport Mobile Legends Kota Bengkulu Dalam Upaya Memenangkan Permainan,” J. Multidisiplin Dehasen, vol. 3, no. 3, pp. 269–276, 2024, doi: 10.37676/mude.v3i3.6556.
F. Kurniawan, “E-Sport dalam Fenomena Olahraga Kekinian,” Jorpres (Jurnal Olahraga Prestasi), vol. 15, no. 2, pp. 61–66, 2020, doi: 10.21831/jorpres.v15i2.29509.
J. P. Suharsono and D. Nurahman, “Pemanfaatan Youtube Sebagai Media Peningkatan Pelayanan Dan Informasi,” Ganaya J. Ilmu Sos. dan Hum., vol. 7, no. 1, pp. 298–304, 2024, doi: 10.37329/ganaya.v7i1.3157.
R. Kurniawan and S. Anwar, “Analisis Sentimen Penggemar Treasure Di Karnaval Mandiri Menggunakan Naïve Bayes,” vol. 4, pp. 203–213, 2025.
Ardiyansyah, Ridhwan, Makmur, Ivan, Phai, Sabrina Phalosa, Studi, Program, Informatika, Teknik, Tarumanagara, Universitas, Barat, Jakarta, & Analyzer, Sentiment Intensity. (2024). Sentimen Komentar Youtube Dengan Sentiment Intensity Analyzer Dari NLTK. 31–36.
Dirgantara, Harya Bima, Lesmana Marselino, Tedi, & Ery Kurniawati, Yulia. (2023). Kajian Literatur Kurikulum E-sport dan Perkembangan Industri Game. KALBISCIENTIA Jurnal Sains Dan Teknologi, 10(1), 7–13. 58 https://doi.org/10.53008/kalbiscientia.v10i1.1799
Paramitha, S. T., Hasan, M. F., Ilsya, M. N. F., Anggraeni, L., & Ramadhan, G. (2021). Level of physical activity of Indonesian esport athletes in the Piala Presiden Esport 2019. Jurnal SPORTIF: Jurnal Penelitian Pembelajaran, 7(1), 71–83. https://doi.org/10.29407/js_unpk.v7i1.15642
Fernando, Daud, Huwaidi, Faris, Ananto, Muhammad Hafidz, & Pramadya, Sahrial. (2021). Comparison of Machine Learning Algorithms in the Role of Hepatitis Patient Disease Classification. 4(2), 159–170. Retrieved from https://doi.org/10.17509/seict.v2i1.34253
Firsttama, Risav Arrahman, Arifiyanti, Amalia Anjani, & Kartika, Dhian Satria Yudha. (2024). Analisis Sentimen Komentar Youtube Konferensi Tingkat Tinggi G20 Menggunakan Metode Naive Bayes. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(2), 282–285. https://doi.org/10.47233/jteksis.v6i2.1263
Amal, B., Damayanti, S., Khonsa, A. N., Zahra, M. H., Rahmadhani, V. A., Anggraeni, W., & Zendrato, K. D. P. (2025). Penilaian Mahasiswa PBSI Unsika Terhadap Keefektifan Penggunaan Google Colab Dalam Pembelajaran Coding. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), 6(1), 66-76.
Sahoo, Satyajeet, Maiti, J., & Tewari, V. K. (n.d.). Multivariate Gaussian Topic Modelling : A novel approach to discover topics with greater semantic coherence. 1–12.
A. Widiyanti and D. A. Megawaty, “Perbandingan Algoritma K-Nearest Neighbor dan Support Vector Machine Pada Pengenalan Pola Tulisan Tangan,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1451, 2024, doi: 10.30865/mib.v8i3.7757
L. Rao, “Sentiment Analysis of English Text with Multilevel Features,” Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/7605125.
Firdaus, Mutiara Puspita, & Trisnawarman, Dedi. (2025). Public Sentiment Analysis of the Public Housing Savings Program Using the IndoBERT Lite Model on YouTube Comments Analisis Sentimen Publik Terhadap Program Tabungan Perumahan Rakyat Menggunakan Model IndoBERT Lite pada Komentar YouTube. 5(January), 359–368.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH NUSANTARA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










