TINJAUAN LITERATUR: PENYEMPURNAAN PROSES PENEMPAAN LOGAM DENGAN ANALISIS TEGANGAN DAN TEMPERATUR
DOI:
https://doi.org/10.61722/jinu.v3i1.7591Keywords:
hot forging, billet temperature, die stress, thermomechanical distribution, finite element simulationAbstract
Variations in billet temperature often lead to uneven stress and heat distribution on the dies during closed-die hot forging. This review aims to identify the die regions that are most vulnerable to excessive loading and to examine how thermal conditions influence the quality of the forged product. The literature analyzed includes studies that combine finite element simulations with actual forging trials carried out at different heating temperatures. The findings consistently show that the die edges experience the highest stress concentrations, particularly when forging is performed at lower billet temperatures, which increases the likelihood of local plastic deformation. In contrast, temperatures within the optimal range promote smoother metal flow, more complete die filling, and a longer die service life. Overall, this review highlights the crucial role of proper billet temperature control in maintaining dimensional accuracy and ensuring stable forging performance.
References
Biba, N., Vlasov, A., Krivenko, D., Duzhev, A., & Stebunov, S. (2020). ScienceDirect ScienceDirect Closed Die Forging Preform Shape Design Using Isothermal Surfaces Method. Procedia Manufacturing, 47(2019), 268–273. https://doi.org/10.1016/j.promfg.2020.04.219
Chan, W. L., Fu, M. W., Lu, J., & Chan, L. C. (2009). Journal of Materials Processing Technology Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. 209, 5077–5086. https://doi.org/10.1016/j.jmatprotec.2009.02.005
Equbal, I., Shamim, M., & Ohdar, R. K. (2014). A grey-based Taguchi method to optimize hot forging process. MSPRO, 6(Icmpc), 1495–1504. https://doi.org/10.1016/j.mspro.2014.07.129
Forming, N., & Pinion, S. (2023). Hot Forging Die Design Optimization Using FEM Analysis for Near-Net Forming of 18CrNiMo7-6 Steel Pinion Shaft.
Gao, P. F., Fei, M. Y., Yan, X. G., Wang, S. B., Li, Y. K., Xing, L., Wei, K., Zhan, M., Zhou, Z. T., & Keyim, Z. (2019). Prediction of the folding defect in die forging : A versatile approach for three typical types of folding defects. 39(February), 181–191. https://doi.org/10.1016/j.jmapro.2019.02.027
Ghalehbandi, S. M., & Biglari, F. (2020). Predicting damage and failure under thermomechanical fatigue in hot forging tools. Engineering Failure Analysis, 113(April), 104545. https://doi.org/10.1016/j.engfailanal.2020.104545
Hawryluk, M., Kaszuba, M., & Gronostajski, Z. (2020). CIRP Journal of Manufacturing Science and Technology Identi fi cation of the relations between the process conditions and the forging tool wear by combined experimental and numerical investigations. 2019. https://doi.org/10.1016/j.cirpj.2020.04.005
Huang, X., Zang, Y., Ji, H., & Wang, B. (2022). Combination gear hot forging process and microstructure optimization. Journal of Materials Research and Technology, 19, 1242–1259. https://doi.org/10.1016/j.jmrt.2022.05.113
Mohammed, A. I., Ahmed, I. K., & Allow, M. A. (2022). Improvement of Metal Forging Processes by Stresses and Temperatures Analysis. 40(June 2021), 869–878.
Pustaka, K. (2009). PROSES FORGING DENGAN VARIASI TEMPERATUR PADA PADUAN. 509–518.
Siripath, N., Jantepa, N., & Sucharitpwatskul, S. (2024). Integrating Taguchi Method and Finite Element Modelling for Precision Ball Joint Manufacturing with AISI 1045 Medium Carbon Steel. 15(October), 1801–1822. https://doi.org/10.14716/ijtech.v15i6.7132
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JURNAL ILMIAH NUSANTARA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










