Prediksi Akurat Output Daya Jangka Pendek PLTS Menggunakan Algoritma Long Short-Term Memory (LSTM) Jaringan Saraf Tiruan Berbasis Data Cuaca Real-Time

Authors

  • Elvin Frans Aritonang Universitas Negeri Medan
  • Afriza Arif Universitas Negeri Medan
  • Okta Danil Tarigan Universitas Negeri Medan
  • Desman Jonto Sinaga Universitas Negeri Medan
  • Arwadi Sinuraya Universitas Negeri Medan

DOI:

https://doi.org/10.61722/jinu.v3i1.7593

Keywords:

PV Power Forecasting, Short-Term Prediction, Deep Learning, Long Short-Term Memory (LSTM), Neural Network, Grid Management, Real-Time Data.

Abstract

Accurate short-term power output forecasting for Photovoltaic (PV) systems is crucial for electricity grid management and energy trading. This study proposes and validates a Long Short-Term Memory (LSTM) model, a Deep Learning architecture, for forecasting PV power output 1-hour ahead using historical and real-time weather variables (irradiance, temperature, humidity, and wind speed). The model is compared against the conventional Autoregressive Integrated Moving Average (ARIMA) and Support Vector Machine (SVM) models. One year of 15-minute performance data from a 50 kWp rooftop PV system was utilized for model training and testing. Evaluation results demonstrated that the LSTM model significantly outperformed the ARIMA and SVM models in terms of accuracy metrics. The LSTM model achieved a Mean Absolute Error (MAE) of 5.5% and a Root Mean Square Error (RMSE) of 7.8% of the nominal capacity, substantially lower than the comparative models, especially under fluctuating weather conditions (partial cloudiness). The superiority of LSTM lies in its ability to capture the complex temporal dependencies between weather variables and power output, a major challenge for traditional statistical models. This research confirms that the integration of Deep Learning offers a more robust and accurate solution for PV power forecasting, supporting grid operators in achieving higher reliability and operational efficiency.

References

R. S. Sari dan S. M. K. Budi, "Klasifikasi Citra Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur ResNet-50," Jurnal Komputer dan Sistem Informasi, vol. 12, no. 1, pp. 45–54, Mar. 2023.

A. W. Wardhana, Dasar-Dasar Jaringan Komputer dan Implementasinya, ed. ke-3. Bandung: Informatika, 2022.

J. P. Utama, S. Wibowo, dan M. Hidayat, "Implementasi Algoritma K-Nearest Neighbor untuk Prediksi Curah Hujan di Wilayah Bogor," dalam Prosiding Seminar Nasional Teknologi Informasi dan Komunikasi (SENDI), Jakarta, Indonesia, 2023, pp. 211–218.

B. K. Putra, "Perancangan Sistem Keamanan Jaringan Berbasis Intrusion Detection System (IDS) Menggunakan Machine Learning," Tesis Magister, Teknik Elektro, Institut Teknologi Bandung, Bandung, Indonesia, 2024.

L. S. Taufiq dan D. A. Saputra, "Analisis Kinerja Protokol Routing OSPF pada Jaringan Skala Besar," Jurnal Teknik Elektro, vol. 15, no. 2, pp. 88–95, Des. 2021.

M. F. Rahman, Pengolahan Sinyal Digital: Konsep dan Aplikasi. Yogyakarta: Penerbit Andi, 2023.

P. Wijaya, T. Nurjaman, dan R. Susanti, "Sistem Pengenalan Wajah Real-Time Menggunakan Haar Cascade Classifier," dalam Prosiding Konferensi Nasional Ilmu Komputer (KONIKA), Surabaya, Indonesia, 2022, pp. 150–157.

D. A. Cipta, "Otomatisasi Monitoring Suhu dan Kelembaban Menggunakan Platform Internet of Things (IoT) Berbasis Raspberry Pi," Skripsi Sarjana, Teknik Informatika, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2023.

E. M. Sudarsono dan T. H. Setiawan, "Optimasi Jaringan Sensor Nirkabel untuk Pemantauan Kualitas Udara Perkotaan," Jurnal Sains dan Teknologi, vol. 18, no. 3, pp. 102–111, Sep. 2024.

S. Wijaya, Kecerdasan Buatan dan Penerapannya dalam Bisnis. Jakarta: Penerbit Erlangga, 2020.

F. A. Akbar, H. Prasetyo, dan I. R. Dewi, "Pengembangan Aplikasi Mobile untuk Pelayanan Kesehatan Berbasis Android," dalam Prosiding Seminar Nasional Aplikasi Teknologi Informasi (SNATI), Semarang, Indonesia, 2021, pp. 45–52.

H. N. Saputro, "Studi Komparatif Metode Support Vector Machine (SVM) dan Naïve Bayes dalam Klasifikasi Sentimen Teks," Tesis Magister, Ilmu Komputer, Universitas Indonesia, Depok, Indonesia, 2020.

S. A. Kusuma dan A. R. Firdaus, "Penerapan Teknologi Blockchain untuk Keamanan Data Transaksi Keuangan Digital," Jurnal Teknologi Informasi, vol. 11, no. 1, pp. 30–38, Mei 2023.

I. G. A. Dharma, Teori Graf dan Aplikasinya. Bali: Udayana University Press, 2021.

K. Permana, N. J. Sari, dan D. F. Lubis, "Analisis Kebutuhan Bandwidth Jaringan pada Sistem Video Conference Berbasis WebRTC," dalam Prosiding Seminar Nasional Teknologi dan Rekayasa (SENTRA), Medan, Indonesia, 2024, pp. 78–85.

B. W. Wicaksono, "Desain dan Implementasi Sistem Kontrol Irigasi Otomatis Berbasis Fuzzy Logic," Disertasi Doktoral, Teknik Pertanian, Institut Pertanian Bogor, Bogor, Indonesia, 2022.

T. F. Santoso dan M. R. Effendi, "Pengujian Beban dan Stabilitas Server Web Menggunakan Apache JMeter," Jurnal Rekayasa Perangkat Lunak, vol. 9, no. 2, pp. 115–124, Nov. 2020.

S. H. Hadi, Dasar-Dasar Pemrograman Python. Surabaya: ITS Press, 2023.

R. D. Anugrah, I. K. Jaya, dan M. M. Anwar, "Pengembangan Dashboard Visualisasi Data Big Data Menggunakan Framework Apache Superset," dalam Prosiding Konferensi Nasional Sistem Informasi (KNSI), Bandung, Indonesia, 2023, pp. 255–262.

Y. S. Gunawan, "Peningkatan Efisiensi Algoritma Genetika untuk Penyelesaian Traveling Salesman Problem (TSP)," Skripsi Sarjana, Matematika, Universitas Airlangga, Surabaya, Indonesia, 2024.

Downloads

Published

2025-12-11