KAMPUS AKADMIK PUBLISING

Jurnal Ilmiah Research Student Vol.1, No.3 Januari 2024

e-ISSN: 3025-5694; p-ISSN: 3025-5708, Hal 229-236

DOI: https://doi.org/10.61722/jirs.v1i3.572

PERTUMBUHAN BIBIT KAKAO (*Theobroma cacao*. L) DI MEDIA TANAM GAMBUT YANG DIBERI TANAH MINERAL DAN ZEOLIT"

1) Ahdi Romadoni 2) Ida Nursanti

¹⁾ Alumni Program Studi Agroteknologi, Fakultas Pertanian Universitas Batanghari
²⁾ Program Studi Agroteknologi, Fakultas Pertanian Universitas Batanghari
Jl. Slamet Riyadi-Broni, Jambi 36122 Telp +62074160103
*Gmail Korespondensi: idanursanti149@gmail.com

ABSTRACT

Peat soil has a very low load-bearing capacity. Peat dries out non-reversibly, contains very low base cations and very high acid cations, very high organic C-C and very low nutrient levels. The addition of mineral soil to peat planting media will reduce the organic acids produced during the decomposition process. Zeolite in soil can improve soil conditions (physical, chemical and biological soil). This research aims to find out. The research aims to study the growth of cocoa seedlings when given mineral soil and zeolite in peat soil media. This research uses a Completely Randomized Design (RAL) with 2 factors. The first factor is the provision of ultisol soil (U) with 4 levels, namely: U0 = without application of ultisol soil, U1 = ultisol soil 15% by weight of the planting medium, U2 = ultisol soil 20% by weight of the planting medium, U3 = ultisol soil 25% by weight of the planting medium. second is Zeolite (Z) with 3 levels, namely: Z0 = without zeolite, Z1 = zeolite 100 g, Z2 = 200 g. Data were analyzed using analysis of variance, followed by Duncan's Multiple Range Test (DNMRT) at the α level of 5%. Research Results shows that the application of zeolite to peat media can significantly influence the growth of cocoa plants, especially the stem diameter.

Key words: Cocoa Seeds, Peat, Mineral Soil, and Zeolite

ABSTRAK

Tanah gambut memiliki daya menahan beban sangat rendah. Gambut bersifat mengering tidak balik, kation basa terkandung sangat rendah dan kation asam sangat tinggi, C-Organik sangat tinggi serta kadar unsur hara yang sangat rendah. Penambahan tanah mineral dalam media tanam gambut akan dapat mengurangi asam-asam organik yang dihasilkan selama proses dekomposisi. Zeolit pada tanah dapat membenahi kondisi tanah (fisik, kimia dan biologi tanah Penelitian ini bertujuan untuk mengetahui Penelitian bertujuan untuk mempelajari pertumbuhan bibit kakao terhadap pemberian tanah mineral dan zeolit di media tanah gambut. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan 2 faktor. Faktor pertama adalahpemberian tanah ultisol (U) dengan 4 taraf yaitu :U0 = tanpa pemberiantanah ultisol, U1 = tanah ultisol 15% berat medium tanam, U2=tanah ultisol 20% berat medium tanam, U3=tanah ultisol 25% berat medium tanam. Faktor kedua adalah Zeolit (Z)dengan 3 taraf yaitu :Z0= tanpa zeolit, Z1 = zeolit 100 g, Z2= 200 g. Data dianalisis menggunakan analisis ragam, dilanjutkan dengan Uji Jarak Berganda Duncan (DNMRT) pada taraf α 5 %. Hasil Penelitian menunjukkan bahwa

pemberian zeolit pada media gambut dapat mempengaruhi pertumbuhan tanaman kakao secara signifikan terutama pada diameter batang.

Kata kunci: Bibit Kakao, Gambut, Tanah Mineral, dan Zeolit

PENDAHULUAN

Tanaman Kakao (*Theobroma cacao*.L) adalah tanaman perkebunan yang umumnya tumbuh di daerah tropis. Bagian dari buah kakao yang dimanfaatkan berupa biji, yang nantinya diolah sedemikian rupa sehingga menghasilkan bubuk coklat, biasa digunakan sebagai minuman penyegar dan makanan ringan.Tanaman ini memegang berperanan penting dalam usahatani kakao selain lingkungan yang sesuai(Prawoto *et al.*, 2004)

Menurut Siregar, Slamet dan Nuraeni (2014) produksi kakao Indonesia dihasilkan dari perkebunan besar Negara dan swasta yang terdapat di daerah Sumatra Utara dan Jawa Timur. Selain itu, juga berasal dari perkebunan rakyat yang tersebar di daerah-daerah Maluku, Sulawesi Selatan, Kalimantan Timur, dan Papua. Peningkatan usaha di bidang pembudidayaan kakao ini telah meningkatkan devisa bagi Negara melalui ekspor dan mendorong ekonomi daerah terutama daerah pendesaan. Dalam kurun waktu 1995-2003, produksi kakao nasional meningkat pesat dengan rata-rata 7,7% per tahun. Sumber pertumbuhan produksi tersebut adalah pertumbuhan areal rata-rata 6,5% per tahun dan peningkatan produktivitas rata-rata 1,26% per tahun. Hal ini menunjukkan bahwa pertumbuhan produksi kakao Indonesia lebih mengandalkan perkembangan areal tanam.

Sedangkan dibanding dengan produktivitas kakao di Provinsi Jambi berfluktuasi setiap tahunnya dan cendrung menurun. Menurunnya produktivitas kakao tersebut erat kaitannya dengan pelaksanaan tehnik budidaya yang masih bersifat sederhana, varietas yang digunakan dan keadaan iklim. Salah satu cara untuk mengatasi hal tersebut adalah perbaikan cara budidaya tanaman itu sendiri, seperti penyediaan bibit yang berkualitas (Dinas Perkebunan Propinsi Jambi, 2008).

Salah satu aspek yang perlu mendapat perhatian didalam menunjang program pengembangan pertanaman kakao adalah penyediaan bibit yang sehat, potensinya unggul dan tepat pada waktunya. Untuk mendapatkan bibit yang baik perlu diciptakan kondisi yang mendukung pertumbuhannya, seperti kebutuhan akan unsur-unsur hara, baik unsur hara makro maupun unsur hara mikro.

Untuk mendukung pengembangan tanaman kakao agar berhasil dengan baik, langkah awal usaha budidaya kakao yang baik adalah mempersiapkan bahan tanam di tempat pembibitan. Karena pembibitan merupakan pertumbuhan awal suatu tanaman sebagai penentu pertumbuhan selanjutnya maka pemeliharaan dalam pembibitan harus lebih intensif dan diperhatikan. Selain pemupukan, pertumbuhan bibit kakao juga dipengaruhi jenis tanah yang digunakan sebagai media.

Sejalan dengan peningkatan jumlah penduduk dan permintaan terhadap produk pertanian maka kebutuhan akan perluasan lahan pertanian juga meningkat. Lahan yang dulunya dianggap sebagai lahan marjinal, seperti lahan gambut, menjadi salah satu sasaran perluasan lahan pertanian. Lahan gambut di Provinsi Jambi arealnya cukup luas, yaitu sekitar 621.086 ha yang mempunyai potensi untuk dijadikan untuk lahan pertanian (BB Litbang SDLP, 2011).

Tanah gambut memiliki berat isi atau *buld density* (BD) lapisan atas sangat rendah antara 0,1 sampai 0,2 g/ cm³. menyebabkan daya menahan atau menyangga beban (*bearing capacity*) menjadi sangat rendah. Gambut bersifat mengering tidak balik, gambutyang telah mengering tidak bisamenyerap air lagi kalau dibasahi. Gambut memiliki pH 3-5, sebagian besar kation basa terkandung sangat rendah dan kation asam sangat tinggi, C-Organik sangat tinggi serta kadar unsur hara yang sangat rendah(Agus dan Subiksa, 2008).

Tanah mineral di Indonesia umumnya juga memiliki sifat kimia yang kurang baik, dimana KTK, bahan organik tanah, stabilitas agregat tanah, kandungan unsur hara N, P, dan K, pH tanah yang rendah, kejenuhan Al tinggi disamping itu, tetapi memiliki stabilitas agregat tanah yang lebih baik dibandingkan tanah gambut (Hardjowigeno, 2003).

Penambahan tanah mineral dalam media tanam gambut akan dapat mengurangi asam-asam organik yang dihasilkan selama proses dekomposisi yang bersifat racun bagi tanaman, yang dapat menghambat metabolisme tanaman danberakibat terhadap penurunan pertumbuhan dan produktifitasnya, karena tanah mineral memiliki tingkat kemasaman yang lebih rendah dibandingkan tanah gambut dan kaya akan bahan polivenol. Selain itu tanah mineral juga mengandung kation polivalen seperti Fe, Al, Cu dan Zn. Kation-kation tersebut membentuk ikatan koordinasi dengan ligan organik membentuk senyawa komplek/khelat. Oleh karenanya bahan-bahan yang mengandung kation polivalen tersebut bisa dimanfaatkan sebagai bahan amelioran gambut (Sibagaring, Wawan dan Yetti, 2013). Selanjutnya dijelaskan juga untuk memperoleh pertumbuhan tanaman padi yang baik dan dapat memberikan perbaikan sifat media tanam tanah gambut disarankan pemberian 21% tanah mineral dari berat media tanam dan diikuti dengan pemberian aerasi.

Sehubungan dengan hal di atas perlu dicobakan juga teknologi yang ramah lingkungan, seperti pemakaian Zeolit (Rahmawati, 2006).Manfaat Zeolit pada tanah dapat membenahi kondisi tanah (fisik, kimia dan biologi tanah), meningkatkan hara tanaman dan kapasitas tukar kation (KTK), mempengaruhi sifat kimia tanah seperti peningkatan kalsium (Ca), kalium (K). Manfaat bagi tanaman dapat meningkatkan produktivitas dan kualitas produk, mempercepat pertumbuhan tanaman, meningkatkan ketahanan tanaman dari hama/penyakit, mengefisienkan penggunaan pupuk (Al-Jabri, 2008).

Sebagai bahan pembenah tanah, jumlah zeolit yang perlu diberikan sekitar 10-20 ton/ha. Zeolit sebagai bahan pembenah tanah dapat meningkatkan KTK tanah yang dalam jangka panjang dapat mempertahankan kualitas tanah. (Suwardi, 2002).Secara kimia kandungan Zeolit yang utama Si0₂ 62,75%; A1₂0₃ 12,71%; K₂0 1,28%; CaO 3,39%; Na₂0 1,29%; Mn0 5,58%; Fe₂0₃ 2,01%; MgO 0,85%; Clinoptilotin 30%; Moedernit 49%. Sedangkan nilai KTK antara 80-120 me/100 g, nilai yang tergolong tinggi untuk penilaian tingkat kesuburan tanah.Penelitian Rahmawati (2006) menyatakan bahwa perlakuan zeolit memberikan pengaruh nyata terhadap kadar air kapasitas lapang, P tersedia, serapan P, berat kering tanaman dan tinggi tanaman.

METODE PENELITIAN

Penelitian ini telah dilaksanakan di Kebun Pijoan, Kampus II, Universitas Batanghari. Alat-alat yang diperlukan cangkul, timbangan, meteran, penggaris, pulpen, buku, kamera, oven, pisau, polybag ukuran 40 x 50 cm dengan ketebalan 0,2 mm. Bahan yang diperlukan benih kakao jenis Upper Amazone Hibrida, zeolit (Na₂AI₂Si₃O_{10.2}H₂O),

pestisida, pupuk dasar, tanah ultisol, tanah gambut. Percobaan dilaksanakan selama 3 bulan, menggunakan menggunakanRancangan Acak Lengkap (RAL) dengan 2 faktor. Faktor pertama adalahpemberian tanah ultisol (U) dengan 4 taraf yaitu :U0 = tanpa pemberiantanah ultisol, U1 = tanah ultisol 15% berat medium tanam, U2=tanah ultisol 20% berat medium tanam, U3=tanah ultisol 25% berat medium tanam. Faktor kedua adalah Zeolit (Z)dengan 3 taraf yaitu :Z0= tanpa zeolit, Z1 = zeolit 100 g, Z2= 200 g. Jumlah kombinasi adalah 12 kombinasi yang diulang sebanyak 3,sehingga diperoleh 36 unit percobaan. Setiap satuan percobaan terdiri dari 3 tanaman, sehingga terdapat 108 tanaman kakao. Data dianalisis menggunakan analisis ragam, dilanjutkan dengan Uji Jarak Berganda Duncan (DNMRT) pada taraf α 5 %. Masing-masing perlakuan diulang sebanyak 3 kali, sehingga terdapat 15 plot. Setiap satuan percobaan terdiri dari 5 tanaman dan 3 sampel. sehingga jumlah tanaman seluruhnya 75 tanaman. Parameter yang diukur adalah Panjang Tunas (cm), Jumlah Daun, dan Bobot Kering Akar (g).

HASIL PENELITIAN DAN PEMBAHASAN

Hasil analisis ragam didapat bahwa media tanam gambut yang diberi ultisol dan zeolit berpengaruh tidak nyata baik pengaruh utama maupun pengaruh kombinasi terhadap peubah pertumbuhan tanaman tinggi tanaman, diameter batang, berat kering tanaman, dan berat kering akar, kecuali pada pengaruh utama pemberian zeolit memberikan hasil berpengaruh nyata terhadap diameter batang.

Hasil analisis ragam perlakuan utama tanah ultisol pada media tanam gambut berpengaruh tidak nyata terhadap tinggi tanaman, diameter batang, berat kering tanaman dan berat kering akar. Hasil uji lanjut DNMRT taraf α 5 % memperlihatkan nilai rata-rata perlakuan tanpa ultisol (U0) menghasilkan tinggi tanaman tertinggi berbeda tidak nyata dengan perlakuan lainnya kecuali pada perlakuan pemberian ultisol 25% (U3). Pada diameter batang angka tertinggi pada perlakuan U0, U1 dan U2 berbeda tidak nyata pada perlakuan U3. Angka tertinggi peubah berat kering tanaman pada perlakuan U0 dan U2 berbeda tidak nyata pada perlakuan lainnya. Pada berat kering akar angka tertinggi terlihat pada perlakuan U2 berbeda tidak nyata pada perlakuan lainnya (Tabel 1).

Tabel 1. Pengaruh utama pemberian tanah ultisol pada media tanam gambut terhadap tinggi tanaman (cm), diameter batang (mm), berat kering tanaman (g) dan berat kering akar (g).

Ultisol (%)	Tinggi Tanaman (cm)	Diameter Batang (mm).	Berat Kering Tanaman (g)	Berat Kering Akar (g)
0 (U0)	14,12a	0,33a	1,11a	0,68ab
15 (U1)	13,37ab	0,33a	1,09a	0,61b
20 (U2)	11,82ab	0,33a	1,11a	0,71a
25 (U3)	11,21b	0,30a	1,04a	0,63ab

Angka yang diikuti oleh huruf kecil yang sama pada setiap kolom adalah berbeda tidak nyata (Uji DMRT $\alpha = 0.05$).

Hasil analisis ragam perlakuan utama pemberian zeolit pada media tanam gambut berpengaruh tidak nyata terhadap tinggi tanaman, berat kering tanaman, berat kering akar, dan berpengaruh nyata terhadap diameter batang (Tabel 2).

Tabel 2. Pengaruh utama pemberian zeolit pada media tanam gambut terhadap tinggi tanaman(cm), diameter batang (mm), berat kering tanaman (g) dan berat kering akar (g).

Zeolit (g)	Tinggi Tanaman (cm)	Diameter batang (mm).	Berat kering tanaman (g)	Berat kering akar (g)
0 (Z0)	12,83a	0,31b	1,10a	0,63a
100(Z1)	13,66a	0,35a	1,09a	0,68a
200 (Z2)	11,40a	0,32ab	1,08a	0,68a

Angka yang diikuti oleh huruf kecil yang sama pada setiap kolom adalah berbeda tidak nyata (Uji DMRT $\alpha = 0.05$).

Hasil uji lanjut memperlihatkan nilai rata-rata perlakuan pemberian zeolit 100g (Z1) menghasilkan tinggi tanaman tertinggi berbeda tidak nyata dengan perlakuan lainnya. Pada diameter batang angka tertinggi pada perlakuan Z1, berbeda nyata pada perlakuan lainnya. Angka tertinggi peubah berat kering tanaman pada perlakuan Z0 berbeda tidak nyata pada perlakuan lainnya. Pada berat kering akar angka tertinggi terlihat pada perlakuan Z1 dan Z2 berbeda tidak nyata pada perlakuan lainnya (Tabel 2).

Nilai rata-rata kombinasi pemberian tanpa tanah ultisol (U0) dan zeolit 100g (Z1) pada media tanam gambut menghasilkan tinggi tanaman tertinggi berbeda nyata dengan perlakuan lainnya kecuali pada perlakuan U0Z0. Nilai rata-rata kombinasi perlakuan terhadap diameter batang, berat kering tanaman dan berat kering akar nilai tertinggi terdapat pada perlakuan U0Z1, U1Z1 dan U2Z1 berbeda tidak nyata terhadap perlakuan lainnya. dan dan kadar N daun tertinggi, berbeda nyata dengan perlakuan lainnya (Tabel 3).

Tabel 3. Pengaruh kombinasi pemberian tanah ultisol dan zeolit pada media tanam gambut terhadap tinggi tanaman (cm), diameter batang (mm), berat kering tanaman (g) dan berat kering akar (g).

Ultisol (%)	Zeolit (g)	Tinggi Tanaman (cm)	Diameter batang (mm)	Berat kering tanaman (g)	Berat kering akar (g)
0 (U0)	0 (Z0)	17,30a	0,30a	0,30a	1,06a
	100(Z1)	17,43a	0,36a	0,36a	1,13a
	200 (Z2)	14,60e	0,33a	0,33a	1,13a
15 (U1)	0 (Z0)	16,60c	0,30a	0,07a	1,10a
	100(Z1)	15,23c	0,36a	0,36a	1,13a
	200 (Z2)	15,87c	0,33a	0,33a	1,03a
20 (U2)	0 (Z0)	15,77c	0,33a	0,33a	1,10a
	100(Z1)	17,07b	0,36a	0,36a	1,13a
	200 (Z2)	15,80c	0,30a	0,30a	1,10a
25 (U3)	0 (Z0)	14,67d	0,30a	0,30a	1,13a
-	100 (Z1)	13,23f	0,30a	0,30a	0,96a

200 (Z2) 15,80f 0,30a 0,30a 1,03a Angka yang diikuti oleh huruf kecil yang sama pada setiap kolom adalah berbeda tidak nyata (Uji DMRT $\alpha = 0.05$).

Dari hasil analisis ragam terlihat bahwa media tanah gambut yang diberi tanah mineral ultisol memperlihatkan pengaruh tidak nyata terhadap semua peubah pertumbuhan tanaman. Hal ini diduga bahwa tanah ultisol belum mampu membantu penyediaan unsur hara pada media tanam gambut untuk pertumbuhan tanaman. Tanah gambut mempunyai pH berkisar antara 2,8 - 4,5 dan kemasaman potensial mencapai >5 cmol/kg, ketersediaan unsur-unsur makro N, P, K, serta jumlah unsur mikro pada umumnya juga rendah. Tanah gambut mengandung bahan organik yang tinggi tetapi sangat bertolak belakang dengan kandungan unsur hara tanahnya. Hal ini disebabkan proses dekomposisi bahan organik belum sempurna, sehingga status hara tanah gambut sangat miskin. Disamping itu bentuk hara P pada tanah gambut didominasi bentuk P organik yang disebut fosfolipida. Fosfolipida tidak dapat dimanfaatkan langsung oleh tanaman, oleh karena itu tanah mineral ultisol dan zeolit sangat berperan untuk mengubah senyawa –senyawa yang tidak tersedia menjadi tersedia bagi tanaman.

Pemberian zeolit di tanah gambut hasil analisis ragam memperlihatkan bahwa pengaruh nyata terutama pada diameter batang dan berpengaruh tidak nyata pada peubah pertumbuhan tanaman lainnya. Hal ini dapat terjadi karena pemberian zeolit pada tanah organik (gambut) dapat meningkatkan pH dan unsur hara tersedia di dalam tanah. Peningkatan pH oleh zeolit dimungkinkan karena kation-kation basa yang terdapat pada zeolit seperti Ca K dan Mg dapat dipertukarkan dengan ion H⁺ dan Al³⁺. Zeolit dapat menyangga pH tanah, tanah masam dapat dinetralisir karena zeolit bersifat tidak masam (pH 7,2) dan dapat mengadsorpsi Al dan Fe penyebab kemasaman tanah serta melepaskan kation-kation basa seperti Ca, Mg dan K. Endro (2008) menjelaskan bahwa zeolit merupakan mineral yang dapat menetralisir pH tanah.

Hasil penelitian memperlihatkan bahwa kombinasi perlakuan pada tanpa pemberian tanah ultisol dan pemberian zeolit 100g menghasilkan pertumbuhan tertinggi pada semua parameter pertumbuhan. Peningkatan tinggi tanaman, diameter batang, berat kering tanaman dan berat kering akar dimungkinkan karena pemberian zeolit pada tanah organik (gambut) dapat meningkatkan pH dan unsur hara tersedia di dalam tanah. Hasil penelitian Djajadi *et al.* (2010) mendapatkan bahwa pemberian bahan organik dan zeolit dapat meningkatkan stabilitas agregat dan kapasitas daya pegang air pada tanah pasir. Kemampuan zeolit tersebut dalam meningkatkan stabilitas agregat tanah disebabkan oleh zeolit mengandung unsur-unsur perekat seperti Al dan Si. Menurut Fungaro (2002), struktur zeolit berongga atau memiliki ruang pori sehingga zeolit mampu menyerap sejumlah besar molekul seperti H₂O yang berukuran lebih kecil atau sesuai dengan rongganya.

Peningkatan pH oleh zeolit dimungkinkan karena kation-kation basa yang terdapat pada zeolit seperti Ca K dan Mg dapat dipertukarkan dengan ion H⁺ dan Al³⁺. Zeolit dapat menyangga pH tanah, tanah masam dapat dinetralisir karena zeolit bersifat tidak masam (pH 7,2) dan dapat mengadsorpsi Al dan Fe penyebab kemasaman tanah serta melepaskan kation-kation basa seperti Ca, Mg dan K. Endro (2008) menjelaskan bahwa zeolit merupakan mineral yang dapat menetralisir pH tanah.

Tanaman kakao membutuhkan paling kurang 13 unsur hara yang diserap melalui tanah. Hara N, P, dan K diperlukan dalam jumlah lebih banyak. Hara Ca, Mg, dan S diperlukan dalam jumlah sedang. Hara Fe, Mn, Zn, Cu, B, Mo, dan Cl diperlukan tanaman dalam jumlah sedikit.. Sebagian besar N dan P dibawa ke titik tumbuh, batang, daun, dan bunga jantan, lalu dialihkan ke biji. (Olsen dan Sander, 1998). Unsur hara berasal dari decomposisi dan mineralisasi yang membebaskan unsur-unsur di dalam tanah. Proses mineralisasi tidak lepas dari aktivitas mikrobia tanah sebagai pendekomposisi dan melepaskan unsur hara ke larutan tanah. Peningkatan KTK pada kondisi air tersedia terjadi karena terpicunya mineralisasi dan aktivitas mikrobia tanah peningkat unsur hara tersedia tanah. Mariam dan Hudayana (2002) mendapatkan bahwa peningkatan KTK tanah dapat disebabkan antara lain oleh muatan negatif dari disosiasi gugus fungsional yang dihasilkan oleh mikrobia tanah, semakin banyak muatan negatif maka kation positif makin mudah dipertukarkan. Keizer dan Zech (1996); Ansori (2005) menambahkan bahwa meningkatnya KTK berarti bertambah pula muatan negatif tanah sehingga dengan demikian akan terjadi penolakan anion, hal ini berakibat pada peningkatan konsentrasi P dalam larutan tanah.

KESIMPULAN

- 1. Pemberian zeolit pada media gambut dapat mempengaruhi pertumbuhan tanaman kakao secara signifikan terutama pada diameter batang.
- 2. Kombinasi pemberian tanpa tanah ultisol (U0) dan zeolit 100g (Z1) pada media tanam gambut menghasilkan tinggi tanaman tertinggi.

DAFTAR PUSTAKA

- Agus.F dan Subiksa.I.G.M. 2008.Lahan Gambut Potensi Pertanian dan Aspek Lingkungan. Balai Penelitian Tanah. Badan Penelitian dan Pengembangan Pertanian. Bogor.
- Al-Jabri, M. 2008. Tantangan dan Peluang Pengembangan Pembenah Tanah Zeolit Pada Lahan Terdegradasi Untuk Peningkatan Produksi Tanaman Pangan. http://balittanah.litbang.pertanian.go.id/ind/dokumentasi/prosiding2008pdf/aljabri_zeolit.pdf
- Ansori. L. 2005. Serapan unsur P, hasil dan kualitas Jagung Manis (*Zea mays saccharata* Sturt) pada tanah ultisol yang diberi kotoran ayam dan pupuk fosfat (tesis). Palembang. Pascasarjana Unsri
- BB litbang SDLP (Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian). 2011. Laporan Tahunan 2011, Konsorsium Penelitian Dan Pengembangan Perubahan Iklim Pada Sektor Pertanian. Balai Besar Penelitian Dan Pengembangan Sumberdaya Lahan Pertanian, Bogor.
- Dinas Perkebunan. 2008. Propinsi Jambi. hhtp//Produtivitas Kakao Dipropinsi Jambi.05 Nopember 2014.
- Djajadi. Helianto.B dan Hidayah,N. 2010. Pengaruh media tanam dan frekuensi pemberian air terhadap sifat fisik, kimia dan biologi tanah serta pertumbuhan jarak pagar. Jurnal Littri. 16(2): 64-69.
- Endro.K. 2008. Optimasi pemanfaatan zeolit alam dari gunung kidul untuk reduksi kadar cesium dalam limbah radioaktif. Prosiding Seminar Nasional Penelitian dan Pengelolaan Perangkat Nuklir, Batan, Yogyakarta.
- Fungaro. D.A. 2002. Removal of toxic metals from waters using zeolites from coal. Journal of Environmental Quality. 2: 116-120.

- Hardjowigeno, S. 2003. Ilmu Tanah. Akademika Pressindo. Jakarta
- Mariam. S dan Hudaya. R. 2002. Pengaruh pupuk organik dan SP 36 terhadap beberapa sifat kimia andisol serapan P dan hasil tanaman kubis (*Braaica oleiaccea*). Soil Lens. 3(6): 275-282.
- Olson.R.A, and Sander.D.H. 1988. Corn production. In Monograph Agronomy Corn and Corn Improvement. Wisconsin. p.639-686.
- Prawoto.A, Santoso. B, Wibawa.A, Sulistywati.E, Winarno. H, 2004. Pusat Penelitian Kopi dan Kakao Indonesia. Panduan Lengkap Budidaya Kakao. Agromedia. Depok.
- Rahmawati. 2006. Pengaruh pemberian Zeolit dan Kompos TKS Terhadap Beberapa Sifat Fisik dan Serapan P Tanaman Jagung (Zea mays L.) Pada Tanah Typic Paleudult. Universitas Sumatera Utara. Medan.
- Sibagaring.DA, dan Yetti. H. 2013. Pengaruh Pemberian Tanah Mineral dan Aerasi Pada Tanah Gambut Yang Disawahkan Terhadap Pertumbuhan dan Produksi Tanaman Padi (Oryza sativa. L)download.portalgaruda.org/article.php. Diakses 3 September 2016.
- Siregar, T, H. Slamet, R. Liali, N. 2014. Budidaya Cokelat. Penebar Swadaya. Jakarta.