KINERJA LAGOON DIGESTER DALAM PENGOLAHAN LIMBAH CAIR INDUSTRI TAPIOKA SEBAGAI BAHAN BAKU BIOGAS DI PT TEDCO AGRI MAKMUR

Authors

  • Debi Tetanika Universitas Malahayati
  • Hardoyo Hardoyo Universitasi Malahayati
  • Arif Setiajaya Universitasi Malahayati

DOI:

https://doi.org/10.61722/jirs.v3i1.8431

Keywords:

biogas, COD removal, limbah cair, tapioka, energi terbarukan

Abstract

Industri tapioka menghasilkan limbah cair dengan beban pencemar tinggi yang berpotensi mencemari lingkungan apabila tidak dikelola dengan baik. Penelitian ini bertujuan untuk menganalisis pemanfaatan limbah cair industri tapioka sebagai bahan baku biogas di PT Tedco Agri Makmur, Tanjung Ratu Ilir, Way Pengubuan, Lampung Tengah. Metode penelitian yang digunakan adalah penelitian deskriptif kualitatif dengan pendekatan studi kasus melalui observasi lapangan, wawancara, dan dokumentasi proses pengolahan limbah serta data operasional instalasi biogas. Hasil penelitian menunjukkan bahwa pengolahan limbah cair melalui sistem fermentasi anaerobik menggunakan lagoon digester mampu menghasilkan biogas dengan kandungan metana yang cukup tinggi serta menurunkan nilai Chemical Oxygen Demand (COD) hingga mencapai 81%. Pemanfaatan biogas sebagai sumber energi terbarukan memberikan manfaat lingkungan dan ekonomi, terutama dalam pengurangan pencemaran serta penghematan penggunaan bahan bakar fosil.

References

Anggari, V. S., & Prayitno, P. (2023). Studi Literatur Limbah Tapioka Untuk Produksi Biogas: Metode Pengolahan Dan Peranan Starter Substrat. Distilat: Jurnal Teknologi Separasi, 6(2), 176–187. https://doi.org/10.33795/distilat.v6i2.106

Budiyono, Matin, H. H. A., Yasmin, I. Y., & Priogo, I. S. (2023). Effect of Pretreatment and C/N Ratio in Anaerobic Digestion on Biogas Production from Coffee Grounds and Rice Husk Mixtures. International Journal of Renewable Energy Development, 12(1), 209–215. https://doi.org/10.14710/ijred.2023.49298

Cayetano, R. D. A., Kim, G.-B., Park, J., Yang, Y.-H., Jeon, B.-H., Jang, M., & Kim, S.-H. (2022). Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. Bioresource Technology, 344, 126309. https://doi.org/10.1016/j.biortech.2021.126309

de Andrade, C. M., Cogo, A. J. D., Perez, V. H., dos Santos, N. F., Okorokova-Façanha, A. L., Justo, O. R., & Façanha, A. R. (2021). Increases of bioethanol productivity by S. cerevisiae in unconventional bioreactor under ELF-magnetic field: New advances in the biophysical mechanism elucidation on yeasts. Renewable Energy, 169, 836–842. https://doi.org/10.1016/j.renene.2021.01.074

Diniz, B. C., Wilfert, P., Sorokin, D. Y., & van Loosdrecht, M. C. M. (2025). Anaerobic digestion at high-pH and alkalinity for biomethane production: Insights into methane yield, biomethane purity, and process performance. Bioresource Technology, 429, 132505. https://doi.org/10.1016/j.biortech.2025.132505

Hirotsugu, K., Udin, H., Yoichi, A., Anugerah, W., Ryuichi, T., Naohiro, G., Hiroyuki, D., & Koichi, F. (2021). Methane Emission from Anaerobic Pond of Tapioca Starch Extraction Wastewater in Indonesia.

Huynh, N. P. M. (2023). Integrated treatment of tapioca processing industrial wastewater based on environmental bio-technology [Wageningen University]. https://doi.org/10.18174/121836

Ibarra, E. F. E., González-López, M. E., Senés-Guerrero, C., Chong, J. P. J., Forrester, S., & Gradilla-Hernández, M. S. (2026). Anaerobic co-digestion of agro-industrial wastes: A systematic review focused on feedstock physicochemical parameter optimization. Biomass and Bioenergy, 206, 108671. https://doi.org/10.1016/j.biombioe.2025.108671

Khomariah, N., Syaichurrozi, I., & Kurniawan, T. (2025). Enhanced Biogas Production from Tapioca Wastewater Through the Microbial Electrolysis Cell-Assisted Anaerobic Digestion Process at Various Urea Additions. Jurnal Bahan Alam Terbarukan, 13(2), 146–155. https://doi.org/10.15294/jbat.v13i2.12860

Lu, Q., Jeong, B., Lai, S., Yan, Z., Xiao, X., & Jiang, W. (2022). Performance Comparison of EGSB and IC Reactors for Treating High-Salt Fatty Acid Organic Production Wastewater. Processes, 10(7), 1295. https://doi.org/10.3390/pr10071295

Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A. L., Lesage, G., Heran, M., & Kim, J. (2021). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358–372. https://doi.org/10.1016/j.biortech.2019.03.061

Mohanty, M. K., & Das, D. M. (2021). Industrial Applications of Anaerobic Digestion.

Parra, O. B. A., Soto-Paz, J., Lara-Franco, S. J., Castañeda-Restrepo, M. F., Oviedo-Ocaña, E. R., Wang, Z., & Sánchez, A. (2025). Nanomaterial-enhanced anaerobic digestion for sustainable bioenergy production: opportunities, challenges and territorial issues. A systematic bibliometric review. Biomass and Bioenergy, 203, 108268. https://doi.org/10.1016/j.biombioe.2025.108268

Sensih, D. G., & Prayitno, P. (2023). Limbah Tapioka Untuk Produksi Biogas: Alternatif Pengolahan Dan Pengaruh Konsentrasi Substrat. Distilat: Jurnal Teknologi Separasi, 6(2), 457–467. https://doi.org/10.33795/distilat.v6i2.158

Srisopa, S., Thepubon, T., Choeisai, P., Choeisai, K., & Kubota, K. (2025). Enhanced biogas production through co-digestion of tapioca starch wastewater and duckweed in a continuous stirred tank reactor. Engineering and Applied Science Research, 52(5), 499–505. https://doi.org/10.14456/easr.2025.44

Xiong, W., Wang, L., Zhou, N., Fan, A., Wang, S., & Su, H. (2020). High-strength anaerobic digestion wastewater treatment by aerobic granular sludge in a step-by-step strategy. Journal of Environmental Management, 262, 110245. https://doi.org/10.1016/j.jenvman.2020.110245

Yang, G., Li, Y., Zhen, F., Xu, Y., Liu, J., Li, N., Sun, Y., Luo, L., Wang, M., & Zhang, L. (2021). Biochemical methane potential prediction for mixed feedstocks of straw and manure in anaerobic co-digestion. Bioresource Technology, 326, 124745. https://doi.org/10.1016/j.biortech.2021.124745

Zhang, X., Ma, G., Sun, C., Guo, H., Xi, Z., Zhang, T., Hu, Y., Li, Y.-Y., & Kong, Z. (2024). Characterization of start-up, long-term performance and resistance to ammonia inhibition during anaerobic treatment of high-strength pharmaceutical wastewater by up-flow anaerobic blanket reactor integrated with partial nitritation-anammox. Journal of Water Process Engineering, 66, 105944. https://doi.org/10.1016/j.jwpe.2024.105944

Zhao, Z., & Chen, Z. (2025). Dual-path exploration of anaerobic biotechnology under carbon neutrality goals: from wastewater methane production to systematic utilization of renewable energy. Frontiers in Environmental Science, 13. https://doi.org/10.3389/fenvs.2025.1613690

Zueva, S., Ferella, F., Corradini, V., & Vegliò, F. (2024). Review of Organic Waste-to-Energy (OWtE) Technologies as a Part of a Sustainable Circular Economy. Energies, 17(15), 3797. https://doi.org/10.3390/en17153797

Downloads

Published

2026-01-17

Issue

Section

Articles