Comparative Analysis of the Distribution of Uninhabitable Houses in Kendal Regency in 2023 and 2024 Based on Geographic Information Systems

Authors

  • Mashfa Kamal Faza Universitas PGRI Semarang
  • Bambang Agus Herlambang Universitas PGRI Semarang
  • Ahmad Khoirul Anam Universitas PGRI Semarang

DOI:

https://doi.org/10.61722/jmia.v3i1.8185

Keywords:

Rumah Tidak Layak Huni, Equal Interval, , Sistem Informasi Geografis, Pemetaan Spasial, Kabupaten Kendal

Abstract

Uninhabitable Houses (RTLH) is one of the settlement problems still faced by Kendal Regency and requires appropriate handling based on spatial data. Information on the distribution and changes in the number of RTLH between sub-districts is important as a basis for more targeted housing development planning. This study aims to analyze the comparative distribution of the number of RTLH in Kendal Regency in 2023 and 2024 using a Geographic Information System (GIS). The research method used is spatial analysis by utilizing RTLH data per sub-district which is processed and visualized in a WebGIS-based thematic map using qgis2web, with the Equal Interval classification method to group the data into three classes: low, medium, and high. The results of the study show that quantitatively there is a decrease in the number of RTLH in most sub-districts in 2024, but spatially the distribution pattern and regional classes tend to remain stable. The resulting interactive thematic map is able to display RTLH information more clearly and easily understood than tabular data presentation. The results of this study are important as supporting material for decision-making for local governments in determining priority areas and evaluating policies for handling RTLH in a sustainable manner.

References

Chandra Wibawa, J., & Hardiyana, B. (2019). Rancang Bangun Sistem Informasi Geografis Rumah Tidak Layak Huni Sebagai Pendukung Keputusan Kebijakan Di Tingkat Desa. Jurnal Teknik Informatika Dan Sistem Informasi, 5(1), 40–50. https://doi.org/10.28932/jutisi.v5i1.1580

Ilmiah, M. (2023). Geomedia. 21(1), 86–95.

Li, S., & Shan, J. (2022). Adaptive Geometric Interval Classifier. ISPRS International Journal of Geo-Information, 11(8). https://doi.org/10.3390/ijgi11080430

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Science and Systems. Wiley.

Perencanaan, M., Pembangunan, K., Ekonomi, F., & Ekonomi, F. (2024). Kondisi Rumah Tidak Layak Huni (RTLH) di Indonesia. Jurnal Kebijakan Ekonomi, 19(1). https://doi.org/10.7454/jke.v19i1.1144

Putri, V. F., & Herlambang, B. A. (2024). Peta Persebaran Rumah Layak Dan Tidak Layak Huni Di Kabupaten Kendal wilayah dan Pembangunan perumahan yang berkelanjutan di Kabupaten Kendal sehingga. 2(1), 40–46.

Rachmawati, R., & Rijanta, R. (2019). Pemanfaatan Sistem Informasi Geografis untuk analisis kondisi permukiman perkotaan. Jurnal Geografi.

Setiawan, A. S., Yaasin, M. H., Umar, S. H., Aliyan, S. A., Putra, A. P., & Setiawan, S. (2025). Pemanfaatan SIG Untuk Pendataan Penerima Manfaat Perumahan Swadaya RTLH Di Kecamatan Soreang. Denali: Jurnal Geografi, 2(1). https://journal.publinesia.com/index.php/denali/article/view/113/83

Wicaksono, R. S., Brata, A. H., & Ananta, M. T. (2023). Sistem Pemetaan dan Pelaporan Rumah Tidak Layak Huni berbasis Web (Studi Kasus: Dinas Perkim Kabupaten Magetan). … Teknologi Informasi Dan Ilmu …, 7(2), 613–622. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/12261/5583

Downloads

Published

2026-01-06

Issue

Section

Articles