INOVASI NANOTEKNOLOGI DALAM PEMURNIAN AIR MINUM: POTENSI DAN TANTANGAN DALAM PRAKTEK TEKNIK LINGKUNGAN

Authors

  • Diva Dinanti Febrianti Politeknik Perkapalan Negeri Surabaya
  • Muhammad Mirza Nafis Pratama Politeknik Perkapalan Negeri Surabaya
  • Robbi Setiawan Dwi Saputro Politeknik Perkapalan Negeri Surabaya
  • Shafira Suryaning Elysiawati Politeknik Perkapalan Negeri Surabaya
  • Denny Oktavina Radianto Politeknik Perkapalan Negeri Surabaya

DOI:

https://doi.org/10.61722/jssr.v2i2.1178

Keywords:

clean water, nanotechnology, water purification, contaminants, nano scale, and nanomaterials.

Abstract

The need for safe drinking water continues to increase with population growth and industrial activity. Although various conventional water purification methods have been implemented, challenges remain in addressing certain contaminants that are difficult to remove. Nanotechnology emerges as a promising innovative solution in water purification, with its ability to address contaminants on a nano scale. This paper explores the potential and challenges in the application of nanotechnology for water purification, as well as its implications for environmental engineering practices. Various nanomaterials such as nanoparticles, nanocomposites, nanofiltration membranes, and nano photocatalysts are discussed in detail. Additionally, this paper also reviews challenges related to cost, toxicity, and regulations associated with the application of nanotechnology in water purification. Through sustained research and development, nanotechnology has the potential to become an effective and environmentally friendly solution to ensure the availability of safe drinking water for the community.

 

References

Akhavan, O., & Ghaderi, E. (2010). Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with highly trap-state assisted dye photodecomposition. Surface and Coatings Technology, 204(21-22), 3676-3683.

Ali, I., Peng, C., Nazi, Z. M., Tan, J., Khan, M. U., & Sikandar, U. (2019). Trends in advanced nanomaterials for wastewater treatment: A review. Journal of Environmental Sciences, 83, 49-64.

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2016). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897-4919.

Basri, H., Ismail, A. F., & Aziz, M. (2014). Polyethersulfone mixed matrix membrane incorporated with multi-walled carbon nanotubes for gas separation applications. Procedia Engineering, 148, 181-188.

Bottero, J. Y., Rose, J., & Wiesner, M. R. (2006). Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2(4), 391-395.

Corsi, I., Winther-Nielsen, M., Sethi, R., Punta, C., Della Torre, C., Invernizzi, L., & Valbonetti, L. (2014). Ecofriendly nanotechnologies and nanomaterials for environmental applications. In Ecotoxicology of nanoparticles in aquatic systems (pp. 109-152). CRC Press.

Habiba, U., Afifi, A. M., Salleh, A., & Ang, B. C. (2013). Chitosan/(polyvinyl alcohol)/ZnO nanoparticles membrane for adsorption of dye. Journal of Nanomaterials, 2013.

Hansen, S. F., & Baun, A. (2012). European regulation affecting nanomaterials–review of limitations and future recommendations. Dose-Response, 10(3), dose-response.

Jiang, D., Chen, Y., Li, N., Zhang, W., Wang, L., Zhu, J., & Gao, B. (2018). Synthesis of porous Fe3O4 nanoparticles for the removal of water contaminants. Journal of Environmental Chemical Engineering, 6(6), 7203-7212.

Jurado, R., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., & Barceló, D. (2014). Urban groundwater contamination by organic micropollutants. Environmental Science and Pollution Research, 21(20), 11932-11944.

Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5(8), 8075-8109.

Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8(1), 19.

Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2015). A recent progress in thin film composite membrane: A review. Desalination, 287, 190-199.

Lee, J., Doherty, C. M., Hill, A. J., & Kentish, S. E. (2016). Recent developments in membrane barrier technology for industrial membrane processes. Journal of Membrane Science and Research, 2(3), 182-208.

Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591-4602.

Linkov, I., Satterstrom, F. K., Steevens, J., Ferguson, E., & Pleus, R. C. (2009). Multi-criteria decision analysis and environmental risk assessment for nanoMaterialsed. Journal of Nanoparticle Research, 11(3), 513-531.

Mulder, M. (1996). Basic principles of membrane technology, 2nd ed. Kluwer Academic Publishers.

Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.

Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10-21.

Qu, X., Alvarez, P. J., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47(12), 3931-3946.

Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83.

Downloads

Published

2024-04-20