Identifikasi Pola Perubahan Tutupan Lahan (Land Cover) Akibat Penggunaan Lahan (Land Use) Menggunakan Algoritma Random Forest Di Kabupaten Bangka Tengah
DOI:
https://doi.org/10.61722/jssr.v3i6.7072Keywords:
LULC, Random Forest, Google Earth Engine, Sentinel-2A, Central Bangka, predictionAbstract
Central Bangka Regency has been facing growing environmental pressures resulting from the expansion of oil palm plantations, mining operations, and accelerated urban development. These activities have caused considerable changes in land cover, posing a threat to the sustainability of local ecosystems. This study aims to examine land cover dynamics between 2019 and 2022 and to forecast future conditions for 2030 as a basis for sustainable spatial planning. Sentinel-2A satellite imagery was processed using the Google Earth Engine(GEE) platform, employing the Random Forest(RF) algorithm to classify land cover into five categories: forest, water, built-up, oil palm plantations, and barren. Model validation through the Overall Accuracy metric demonstrated strong classification performance, reaching 0.90297 in 2019 and 0.90849 in 2022. The analysis showed a 21.63% reduction in forest area, alongside significant increases in oil palm and built-up land. The projection for 2030 suggests that forest cover may decline to just 3.35% of the total area, with oil palm plantations and built-up land becoming dominant. These results emphasize the necessity of implementing sustainable land-use management strategies to maintain a balance between economic growth and environmental conservation in Central Bangka Regency.
References
Adhiatma, R., Widiatmaka, & Lubis, I. (2020). Perubahan penggunaan/tutupan lahan dan prediksi perubahan penggunaan/tutupan lahan di Kabupaten Lampung Selatan. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(2), 234–246. https://doi.org/10.29244/jpsl.10.2.234-246
Afasel, D., Purnamasari, R., & Edwar. (2022). Klasifikasi tutupan lahan menggunakan supervised machine learning pada citra satelit menggunakan Google Earth Engine. E-Proceeding of Engineering, 8(6), 3281.
Aldiansyah, S., & Saputra, R. A. (2022). Comparison of machine learning algorithms for land use and land cover analysis using Google Earth Engine (Case study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences, 19(2). Retrieved from https://jurnal.lapan.go.id/index.php/ijreses/article/view/3803
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Beria, H., Sahoo, B., & Sahoo, S. (2021). Comparison of machine learning algorithms for land use land cover classification in a hilly terrain using Sentinel-2A imagery. Remote Sensing Applications: Society and Environment, 24, 100631.
Fitriana, F., Altiarika, E., Apriyani, R., & Saadah, N. (2024). Identification of Tin Mining Land Cover Change in Central Bangka Regency Using Machine Learning dan Google Earth Engine (GEE). Journal of Global Sustainable Agriculture, 5(1), 78–83. https://doi.org/10.32502/jgsa.v5i1.333
Foody, G. M. (2022). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/s0034-4257(01)00295-4
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Macarringue, L. S., Bolfe, É. L., & Pereira, P. R. M. (2022). Developments in land use and land cover classification techniques in remote sensing: A review. Journal of Geographic Information System, 14(1), 1–28. https://doi.org/10.4236/jgis.2022.141001
Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S. M. M., & Borz, S. A. (2022). Land use and land cover mapping using Sentinel-2, Landsat 8 satellite images, and Google Earth Engine: A comparison of two composition methods. Remote Sensing, 14(9), 1977. https://doi.org/10.3390/rs14091977
Phan, T. H., Nguyen, D. T., Le, M. T., & Tran, P. H. (2024). Modeling of land use and land cover changes using Google Earth Engine and machine learning approach: Implications for landscape management. Environmental Systems Research.
Pratama, D., Ningsih, A. A., & Hidayat, F. (2020). Dampak aktivitas pertambangan timah terhadap perubahan penggunaan lahan di Pulau Bangka. Jurnal Ilmu Lingkungan, 18(1), 72–83. https://doi.org/10.14710/jil.18.1.72-83
Putra, A. N., Jaenudin, Prasetya, N. R., Sugiarto, M. T., Sudarto, Prayogo, C., & Admajaya, F. T. (2025). Utilizing remote sensing and random forests to identify optimal land use scenarios and address the increase in landslide susceptibility. Sustainability, 17(9), 4227. https://doi.org/10.3390/su17094227
Rahmawati, A. D. R., Asy’ Ari, A., & Ranti, R. (2023). Google Earth Engine & Sentinel-2 MSI: Integrasi data spatio-temporal untuk memetakan LUCC menggunakan algoritma Random Forest. Jurnal Ilmiah Penalaran dan Penelitian Mahasiswa. Retrieved from https://jurnal.ukmpenelitianuny.id/index.php/jippm/article/view/241
Rudiastuti, A. W., Lumban-Gaol, Y., Silalahi, F. E. S., Prihanto, Y., & Pranowo, W. S. (2022). Implementing random forest in GEE: Transferability on built-up area in Central Java, Indonesia. International Journal on Informatics Visualization, 6(1), 74–82. https://doi.org/10.30630/joiv.6.1.873
Setiawan, F. (2021). Analisis perubahan tutupan/penggunaan lahan Kabupaten Bangka Selatan tahun 2015–2020. Seminar Nasional Penelitian dan Pengabdian Masyarakat, 209–213. Retrieved from https://journal.ubb.ac.id/index.php/snppm/article/view/2752
Winata, A., Sari, R., & Pratama, Y. (2025). Exploring land cover dynamics: Open mining activities footprint in Central Bangka District, Indonesia. Journal of Degraded and Mining Lands Management (JDMLM), 12(3), 171–183. https://jdmlm.ub.ac.id/index.php/jdmlm/article/view/17112
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JOURNAL SAINS STUDENT RESEARCH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










