Sentiment Analysis of Coretax Tax Application Users Using IndoBERT and Web Scraping on the X (Twitter) Platform

Case Study on Indonesian Taxpayer Digital Service Feedback

Authors

  • Muhammad Al Faris Syabil Universitas Islam Negeri Sumatera Utara
  • Fajar Al-Fahri Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.61722/jssr.v4i1.7258

Keywords:

Coretax, IndoBERT, public perception, sentiment analysis, text preprocessing

Abstract

This study analyzes public sentiment toward the Coretax tax system based on user opinions posted on the X (Twitter) platform. The objective is to assess how the public perceives the system’s stability, accessibility, and performance during periods of high usage. A quantitative text-based approach was applied using Natural Language Processing (NLP) techniques. Data were collected through web scraping of tweets containing Coretax-related keywords and processed through six preprocessing stages: case folding, cleaning, tokenizing, normalization, stopword removal, and stemming. Sentiment classification was conducted using the IndoBERT model mdhugol/indonesia-bert-sentiment-classification, which categorized tweets into positive, negative, and neutral classes. The results show that 181 tweets expressed positive sentiment, 171 negative sentiment, and 29 neutral sentiment. Negative sentiment predominantly relates to system errors and login difficulties, whereas positive sentiment commonly appears when the system functions normally. These findings demonstrate that system instability remains the primary factor influencing negative perceptions of Coretax and provide useful insights for improving the reliability of digital tax services.

References

Anindya, F. S., & Kaesmetan, Y. R. (2025). IMPLEMENTASI METODE BERT DAN SVM PADA ANALISIS SENTIMEN GAME GENSHIN IMPACT. Jurnal Manajamen Informatika Jayakarta, 5(1), 52–60.

https://journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/1781

Fahlapi, R., Ramadani, L. A., Julianti, D. A., Aldilah, R., & Amalia, D. (2025). ANALISIS SENTIMEN ULASAN PENGGUNA CORETAX DI APLIKASI TWITTER MENGGUNAKAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE. Kohesi: Jurnal Multidisiplin Saintek, 8(6).

https://ejournal.cahayailmubangsa.institute/index.php/kohesi/article/view/2166/1878/6231

Farhan, N. M., & Setiaji, B. (2023). Komparasi Metode Naive Bayes dan SVM pada Sentimen Twitter Mengenai Persoalan Perpu Cipta Kerja: Comparison of Naive Bayes and SVM Methods on Twitter Sentiment Regarding the Government Regulations on Job Creation Issue. The Indonesian Journal of Computer Science, 12(5).

http://ijcs.net/ijcs/index.php/ijcs/article/view/3375

Febriani, S., Wijayanti, Y., & Siswanto, I. (2025). Twitter Sentiment Analysis on Digital Payment in Indonesia Using Artificial Neural Network. Journal of Applied Informatics and Computing, 9(2), 526–533.

https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/8988/2689/29015

Gea, J. S., Budiati, H., Lase, K. J. D., & Berutu, S. S. (2024). Analisis Sentimen Masyarakat Terhadap Direktorat Jenderal Pajak. Infact: International Journal of Computers, 8(01), 28–34.

https://journal.ukrim.ac.id/index.php/JIF/article/view/466/377/1812

Hasan, M. A., & Bimby, N. (2025). Analisis Sentimen Publik Terhadap Kenaikan Pajak PPN di Indonesia Tahun 2024 Menggunakan Algoritma Machine Learning. JURNAL FASILKOM, 15(1), 179–184.

https://ejurnal.umri.ac.id/index.php/JIK/article/view/8556

Kartika, B. V., Alfredo, M. J., & Kusuma, G. P. (2023). Fine-Tuned IndoBERT Based Model and Data Augmentation for Indonesian Language Paraphrase Identification. Revue d’Intelligence Artificielle, 37(3).

https://www.iieta.org/journals/ria/paper/10.18280/ria.370322

Khairani, U., Mutiawani, V., & Ahmadian, H. (2024). Pengaruh tahapan preprocessing terhadap model Indobert dan Indobertweet untuk mendeteksi emosi pada komentar akun berita Instagram. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(4), 887–894.

https://jtiik.ub.ac.id/index.php/jtiik/article/view/8315

Manoppo, M. R., Kolang, I. C., Fiat, D. N. N., Mawara, R. M. C., Sumarno, A. D. P., Yusupa, A., & Tarigan, V. (2025). ANALISIS SENTIMEN PUBLIK DI MEDIA SOSIAL TERHADAP KENAIKAN PPN 12% DI INDONESIA MENGGUNAKAN INDOBERT. Jurnal Kecerdasan Buatan Dan Teknologi Informasi, 4(2), 152–163.

https://ojs.ninetyjournal.com/index.php/JKBTI/article/view/322/108

Maulana, I. A., & Wibowo, A. P. W. (2025). Analysis of public sentiment text clustering on tax increases using Orange data mining on Twitter. Brilliance: Research of Artificial Intelligence, 5(1), 93–99.

https://jurnal.itscience.org/index.php/brilliance/article/view/5787/4403

Meilandri, D. (2025). Transformation of Indonesia’s Tax System through Coretax: A Qualitative Study in the Digital Era. Sustainability Accounting Journal, 2 (1), 51-56.

https://e-journal.upr.ac.id/index.php/SAJ/article/view/19497/6980/44827

Primatrias, R., Huda, B., & Hilabi, S. (2025). Analisis Sentimen Masyarakat Terhadap Opsen Pajak pada Media Sosial X Menggunakan Metode Naïve Bayes. IKRAM: Jurnal Ilmu Komputer Al Muslim, 4(2), 54–61.

https://journal.almuslim.ac.id/index.php/ikram/id/article/view/96

Putri, D. I., Alfian, A. N., Putra, M. Y., & Mulyo, P. D. (2024). IndoBERT Model Analysis: Twitter Sentiments on Indonesia’s 2024 Presidential Election. Journal of Applied Informatics and Computing, 8(1), 7–12.

https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/7440

Rizkia, A. S., Wufron, W., & Roji, F. F. (2025). Analisis Sentimen Coretax: Perbandingan Pelabelan Data Manual, Transformers-Based, dan Lexicon-Based pada Performa IndoBERT: Sentiment Analysis of Coretax: A Comparison of Manual, Transformers-Based, and Lexicon-Based Data Labeling on IndoBERT Performance. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 1037–1048.

https://www.journal.irpi.or.id/index.php/malcom/article/view/2151/1034

Sayarizki, P., & Nurrahmi, H. (2024). Implementation of indobert for sentiment analysis of indonesian presidential candidates. Indonesian Journal on Computing (Indo-JC), 9(2), 61–72.

https://socjs.telkomuniversity.ac.id/ojs/index.php/indojc/article/view/934

Sejati, P. T., Alzami, F., Marjuni, A., Indrayani, H., & Puspitarini, I. D. (2024). Aspect-Based Sentiment Analysis for Enhanced Understanding of’Kemenkeu’Tweets. Journal of Applied Informatics and Computing, 8(2), 487–498.

https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/8558/2513/27124

Sumartha, D. K. (2025). IMPLEMENTASI INDOBERT UNTUK ANALISIS SENTIMEN OPINI PUBLIK TERHADAP KEBIJAKAN KENAIKAN UKT DI ERA PEMERINTAHAN. Jurnal Informatika Dan Teknik Elektro Terapan, 13(3S1).

https://journal.eng.unila.ac.id/index.php/jitet/article/view/7880

Tarigan, D. D., & Idrus, S. A. I. (2024). Journal of Informatics and Data Science ( J-IDS ) Sentiment Analysis of Twitter Users Regarding Taxation Topics in. Journal of Informatics and Data Science (J-IDS), 03(01). https://doi.org/10.24114/j-ids.xxxxx

https://jurnal.unimed.ac.id/2012/index.php/jids/article/view/52465

Wijaya, W., Seputra, K. A., & Dewi, N. P. N. P. (2025). FINE TUNNING MODEL INDOBERT UNTUK ANALISIS SENTIMEN BERITA PARIWISATA INDONESIA. Jurnal Pendidikan Teknologi Dan Kejuruan, 22(2), 195–204.

https://ejournal.undiksha.ac.id/index.php/JPTK/article/view/104056

Downloads

Published

2025-12-03

Issue

Section

Articles