SISTEMATISASI PENERAPAN MACHINE LEARNING DALAM PREDIKSI RISIKO KEBANGKRUTAN PERUSAHAAN: SYSTEMATIC LITERATURE REVIEW

Authors

  • Meli Apriani Program Studi Akuntansi, Universitas Teknologi Sumbawa
  • Emya Satira Program Studi Akuntansi, Universitas Teknologi Sumbawa
  • Dwi Wulan Sari Program Studi Akuntansi, Universitas Teknologi Sumbawa
  • Jusma Wati Program Studi Akuntansi, Universitas Teknologi Sumbawa
  • Meti Afriyanti Program Studi Akuntansi, Universitas Teknologi Sumbawa
  • Sudrajat Martadinata Universitas Teknologi Sumbawa

DOI:

https://doi.org/10.61722/jssr.v4i1.7281

Keywords:

machine learning, bankruptcy prediction, financial distress, NLP, deep learning, SLR, XAI

Abstract

This study aims to systematize the development of machine learning applications for predicting corporate bankruptcy risk using a PRISMA-based Systematic Literature Review (SLR). A total of 17 articles published between 2015 and 2025 were analyzed to map research trends, compare algorithm performance, and evaluate the role of financial and non-financial data in prediction models. The findings indicate a clear shift from traditional statistical approaches toward machine learning algorithms such as SVM, Random Forest, ANN, and Deep Neural Networks, which consistently demonstrate higher accuracy across various countries and industries. The integration of Natural Language Processing (NLP), particularly annual report text analysis using BERT, enhances early detection of financial distress. However, challenges remain, including imbalanced data, overfitting risks, and limited model interpretability. These insights contribute to the development of more adaptive bankruptcy prediction models and highlight the importance of incorporating Explainable AI (XAI) to improve model transparency and reliability.

References

Alaka, H., Kliestik, I., & Kovarik, P. (2018). Systematic review of machine learning in corporate failure prediction. Journal of Business Research, 94, 225–243.

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609.

Barus, A., & Marbun, D. (2020). Bankruptcy prediction using machine learning techniques: Evidence from Indonesia. Jurnal Ekonomi & Keuangan, 12(2), 101–112.

Clement, C., & David, M. (2022). BANKRUPTCY PREDICTION USING MACHINE LEARNING – A. 26, 63–77.

Clement, J., Wilson, R. D., & Lopez, G. (2022). Meta-analysis of machine learning algorithms for bankruptcy prediction. Journal of Financial Analytics, 15(3), 112–130.

Chen, H., Zhang, L., & Lim, S. (2023). Deep learning approaches for bankruptcy forecasting in Asian markets. Asian Finance Review, 11(1), 44–59.

Dan, I., Intech, T., Sulistiani, I., Mufida, E., Yasser, P. M., & Alamsyah, L. (2021). Systematic Literature Review : Bankruptcy Prediction Menggunakan Teknik Machine Learning dan Deep Learning. 2(1), 13–18.

Devi, S. S., & Radhika, Y. (2018). A survey on machine learning and statistical techniques in bankruptcy prediction. International Journal of Machine Learning and Computing, 8(2), 170–176. https://doi.org/10.18178/ijmlc.2018.8.2.676

Ghosh, R., Kumar, S., & Singh, P. (2022). Hybrid deep learning models for corporate failure prediction. International Journal of Data Science, 7(4), 88–102.

Ha, H. H., Dang, N. H., & Tran, M. D. (2023). Financial distress forecasting with a machine learning approach. Corporate Governance & Organizational Behavior Review, 7(3), 125–140. https://doi.org/10.22495/cgobrv7i3p8

Hamdi, M., Mestiri, S., & Arbi, A. (2024). Artificial intelligence techniques for bankruptcy prediction of Tunisian companies: An empirical comparison of ML and DL models. North African Journal of Economics and Finance, 5(1), 33–49.

Insani, F., & Pontoh, G. T. (2024). Corporate Bankruptcy Prediction Model : A Systematic Literature Review. 7(July), 143–159.

Kim, A. G. (2021). Corporate Bankruptcy Prediction with Domain-Adapted BERT. 26–36.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

Lee, D., & Kim, B. (2021). Efficient Depth Data Coding Method Based on Plane Modeling for Intra Prediction. 9, 29153–29164. https://doi.org/10.1109/ACCESS.2021.3056687

Li, Y., & Wang, Y. (2018). Machine learning methods of bankruptcy prediction using accounting ratios. Open Journal of Business and Management, 6, 1–20. https://doi.org/10.4236/ojbm.2018.61001

Ling, Y., & Wang, P. P. (2024). Ensemble Machine Learning Models in Financial Distress Prediction : Evidence from China. 226–242. https://doi.org/10.4236/jmf.2024.142013

Miranda, A., Nashwa, E., Amelia, C., & Yani, F. (2025). Laporan keuangan sebagai instrumen deteksi dini atas kebangkrutan perusahaan: Literatur review. Jurnal Akuntansi Multiparadigma, 2(4), 2551–2556.

Narvekar, A., & Guha, D. (2021). Bankruptcy prediction using machine learning and its application during the COVID-19 recession. Data Science in Finance and Economics, 1(3), 180–195. https://doi.org/10.3934/DSFE.2021010

Nguyen, H. H., Viviani, J., & Jabeur, S. B. (2023). Bankruptcy prediction using machine learning and Shapley additive explanations. Finance Research Letters. (In press).

Nugroho, H., & Rilvani, A. (2023). Handling imbalanced datasets in bankruptcy prediction using SMOTE and Random Forest. Indonesian Journal of Data Science, 4(2), 77–90.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Prabowo, A., & Yansyah, D. (2023). AI-based early detection of financial distress in Indonesian firms. SPECTA Journal of Technology, 7(3), 650–657. https://doi.org/10.35718/specta.v7i3.1022

Raza, H., Ahmad, I., & Máté, D. (2023). Comparative analysis of machine learning models for bankruptcy prediction in the context of Pakistani companies. Asia-Pacific Journal of Economics, 10(2), 55–67.

Shetty, S., Musa, M., & Br, X. (2022). Bankruptcy prediction using machine learning techniques. Journal of Finance & Data Analytics, 5(1), 21–34.

Shi, Y., & Li, X. (2019). An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Journal of Risk & Financial Management, 15(2), 114–127.

Systematic review of bankruptcy prediction models : Towards a framework for tool selection. (2018). https://doi.org/10.1016/j.wasman.2016.08.017

Triyono, H., & Ahmar, N. (2024). Meta Analisis Hasil Prediksi Kegagalan Perusahaan dengan Pendekatan 4 Model Prediksi Kebangkrutan. 5(3), 465–478

Winaya, G. Y., Muliartha, K. M. R., Budiasih, I. G. A. N., & Wiratmaja, I. D. N. (2020). Analysis of Altman Z-Score and Zmijewski bankruptcy prediction in telecommunication sub-sectors listed on the Indonesia Stock Exchange. Jurnal Riset Akuntansi Indonesia, 1, 313–322.

Yap, B. W. (2019). Personal bankruptcy prediction using decision tree model. Journal of Economics, Finance and Administrative Science, 24(48), 44–58. https://doi.org/10.1108/JEFAS-08-2018-0076.

Downloads

Published

2025-12-03

Issue

Section

Articles