PENINGKATAN AKURASI PREDIKSI PENJURUSAN SISWA SMK DENGAN OPTIMASI JARINGAN SYARAF TIRUAN BACKPROPAGATION
DOI:
https://doi.org/10.61722/jssr.v4i1.7975Keywords:
Major Prediction, Artificial Neural Network, BackpropagationAbstract
The development of artificial intelligence (AI) technology has had an increasingly significant impact on various industries, including education, particularly in terms of data processing and decision making. However, in reality, students' choice of major is often determined without proper and measurable analysis, which means that students' potential is not always in line with their chosen major. The mismatch between academic abilities and chosen fields of study is one of the problems arising from this situation. To address this issue, this study predicts majors based on subject grade data using Artificial Neural Network techniques and the Backpropagation algorithm. Backpropagation was chosen because it can produce more accurate predictions by gradually learning data patterns through a directed learning process. This approach significantly improves prediction accuracy based on model training and testing results, making it a useful tool for more objective, flexible, efficient, adaptive, and data-driven decision-making in optimally selecting majors for students to support their overall and sustainable academic success.
References
AZIZ, A. F. (2022). PREDIKSI KONSUMSI ENERGI LISTRIK JANGKA MENENGAH MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN.
CINDI. (2024). PERBANDINGAN FUNGSI AKTIVASI TERHADAP KINERJA ALGORITMA NEURAL NETWORK PADA KLASIFIKASI DATA DIABETES. UNIVERSITAS SULAWESI BARAT.
Hartati, S. (2021). Kecerdasan Buatan Berbasis Pengetahuan. Ugm Press.
Karyadi, B. (2023). Pemanfaatan kecerdasan buatan dalam mendukung pembelajaran mandiri. Jurnal Teknologi Pendidikan, 8(2).
Pane, D. H. (2023). JST FOR BEGINNER. PT. Sonpedia Publishing Indonesia.
Pongtambing, Y. S., Appa, F. E., Siddik, A. M. A., Sampetoding, E. A. M., Admawati, H., Purba, A. A., Sau, A., & Manapa, E. S. (2023). Peluang dan tantangan kecerdasan buatan bagi generasi muda. Bakti Sekawan: Jurnal Pengabdian Masyarakat, 3(1), 23–28.
Saputra, R. A. (2023). Perbandingan metode regresi dan jaringan saraf tiruan Backpropagation (prediksi harga makanan laut).
Siswondo, R., & Agustina, L. (2021). Penerapan strategi pembelajaran ekspositori untuk mencapai tujuan pembelajaran Matematika. Himpunan: Jurnal Ilmiah Mahasiswa Pendidikan Matematika, 1(1), 33–40.
Sunardi, S. (2022). Pengaruh Nilai Hidden layer dan Learning rate Terhadap Kecepatan Pelatihan Jaringan Saraf Tiruan Backpropagation. JIKO (Jurnal Informatika Dan Komputer), 6(1), 27–33.
Syahrul, A., & Kurniadi, D. (2025). PENERAPAN JARINGAN SYARAF TIRUAN UNTUK PREDIKSI BIAYA PROYEK KONTRUKSI JALAN MENGGUNAKAN METODE BACKPROPAGATION DENGAN MODEL MLP (STUDI KASUS: JALAN WILAYAH KABUPATEN PEKALONGAN). Journal of Information Systems Management and Digital Business, 2(4), 372–383.
Thoriq, M. (2022). Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation. Jurnal Informasi Dan Teknologi, 4(1), 27–32.
Thoriq, M., Syaputra, A. E., & Eirlangga, Y. S. (2024). Prediksi Peningkatan Kunjungan Pasien Dimasa Mendatang Mengunakan Jaringan Saraf Tiruan Backpropagation. JURNAL FASILKOM, 14(1), 34–40.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JOURNAL SAINS STUDENT RESEARCH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










