Analisis Performa Transfer Learning Menggunakan MobileNetV2 untuk Klasifikasi Citra X-Ray Paru-Paru
DOI:
https://doi.org/10.61722/jssr.v4i1.8306Keywords:
Mobilenetv2, Pneumonia, Transfer Learning, X-Ray paru paruAbstract
Pneumonia is a lung disease that requires early detection to prevent serious complications. Chest X-ray images are widely used for diagnosis; however, their interpretation still depends on medical experts. This study aims to analyze the performance of transfer learning using MobileNetV2 for classifying chest X-ray images. The Chest X-Ray Pneumonia dataset from Kaggle was used and divided into 75% training data, 15% validation data, and 10% testing data. Image preprocessing included resizing, pixel normalization, and data augmentation. The model was trained for 20 epochs using the Adam optimizer. Experimental results achieved an accuracy of 95.40%, precision of 95.62%, recall of 95.40%, and an F1-score of 95.46%. These results indicate that MobileNetV2 provides effective and stable performance for chest X-ray image.
References
Anwar, M. A., Gerhana, Y. A., & Syaripudin, U. (2025). Klasifikasi Pneumonia pada Citra X-Ray Menggunakan CNN ResNet50V2 dengan Transfer Learning. SMATIKA : STIKI Informatika Jurnal, 15(1), 126–135.
Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123–135. https://doi.org/10.28932/jmh.v5i2.6116
Hartono, A. C., & Muslikh, A. R. (2025). Penerapan Transfer Learning MobileNetV2 Pada Klasifikasi Citra Jenis Buah-Buahan Applying MobileNetV2 Transfer Learning for Image Classification of Fruit Types. Journal of Information System and Application Development, 3(2), 103–111. https://doi.org/10.26905/jisad.v3i2.16187
Latupono, A. S., & Rahardi, M. (2025). Transfer Learning Analysis on Tuberculosis Classification Using MobileNetV2 Architecture Based on Chest X-Ray Images. 9(6), 3370–3373.
M. Lupague, R. M. J., Mabborang, R. C., Bansil, Prof. A. G., & Lupague, M. M. (2023). Assessing Transfer Learning Models for Medical Image Classification: A Comparative Study on Alzheimer’s MRI, Chest CT-Scan, and Chest X-ray Images. International Journal of Recent Technology and Engineering (IJRTE), 12(3), 59–71. https://doi.org/10.35940/ijrte.c7897.0912323
Mirzaee, A., & Ghorbanzadeh, P. (2025). Performance Evaluation and Comparison of Transfer Learning Models in Chest X-Ray Image Classification Using Deep Neural Networks. Management Strategies and Engineering Sciences, 7(4), 33–40. https://doi.org/10.61838/msesj.7.4.4
Mozafarnaserabad, B. (2025). A Novel Two-Stage Transfer Learning Approach based on MobileNetV2 for Efficient Tumor Detection in Medical Images.
Purba, M. (2024). Studi Literatur : Transfer Learning Untuk Analisis Penyakit COVID-19 Berdasarkan Dataset Chest X-ray. JSAI: Journal Scientific and Applied Informatics, 7(2), 386–392.
Ragab, M., Alshehri, S., Azim, G. A., Aldawsari, H. M., Noor, A., Alyami, J., & Abdel-khalek, S. (2022). COVID-19 Identification System Using Transfer Learning Technique With Mobile-NetV2 and Chest X-Ray Images. Frontiers in Public Health, 10(March), 1–15. https://doi.org/10.3389/fpubh.2022.819156
Rakha, M., Sulistiyo, M. D., Nasien, D., & Ridha, M. (2024). a Combined Mobilenetv2 and Cbam Model To Improve Classifying the Breast Cancer Ultrasound Images. Journal of Applied Engineering and Technological Science, 6(1), 561–578. https://doi.org/10.37385/jaets.v6i1.4836
Shamrat, F. J. M., Azam, S., Karim, A., Ahmed, K., Bui, F. M., & De Boer, F. (2023). High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Computers in Biology and Medicine, 155(January), 106646. https://doi.org/10.1016/j.compbiomed.2023.106646
Somoal, M. G., & Dzikrillah, A. R. (2025). Komparasi MobileNETV2 dengan Kustomisasi Transfer Learning dan Hyperparameter untuk Identifikasi Tumor Otak. Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(1), 229–240. https://doi.org/10.25126/jtiik.2025129582
Syaifurrahman, R., & Silmina, E. P. (2025). Deteksi Penyakit Paru-Paru Berdasarkan Gambar Citra X-Ray Menggunakan Arsitektur Convolutional Neural Network ( Arsitektur. 7(1), 550–560. https://doi.org/10.47065/bits.v7i1.7457
Syakuroh, A., Monado, F., Ariani, M., Hadi, H., Koriyanti, E., & Erni, E. (2025). Analisis Akurasi Model Mobilenetv2 Dalam Klasifikasi Citra X-Ray Untuk Deteksi Kondisi Paru-Paru. Journal Online of Physics, 10(3), 67–74. https://online-journal.unja.ac.id/jop/article/view/44453
Velu, S. (2023). An efficient, lightweight MobileNetV2-based fine-tuned model for COVID-19 detection using chest X-ray images. Mathematical Biosciences and Engineering, 20(5), 8400–8427. https://doi.org/10.3934/mbe.2023368
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JOURNAL SAINS STUDENT RESEARCH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










