ANALISIS DATA PELANGGAN DENGAN ALGORITMA K-MEANS UNTUK PENINGKATAN PENJUALAN LAYANAN ICONNET DI BANGKA BELITUNG

Authors

  • Muhamad Mustaqim Universitas Muhammadiyah Bangka Belitung
  • Yudistira Bagus Pratama Universitas Muhammadiyah Bangka Belitung
  • Arvi Pramudyantoro Universitas Muhammadiyah Bangka Belitung

DOI:

https://doi.org/10.61722/jaem.v2i4.7106

Keywords:

Clustering; ICONNET; K-Means; Machine Learning; Sales Increase

Abstract

Sales increase is an essential factor for telecommunication service providers, including ICONNET, a subsidiary of PLN, amid intense market competition. Companies face the challenge of designing effective marketing strategies without structured customer data analysis. This study aims to apply the K-Means Machine Learning algorithm to analyze and cluster ICONNET customer data in Bangka Belitung, with the expected results supporting strategic sales increase decisions. The methodology employed is Data Mining with the CRISP-DM framework, where the modeling process implements the K-Means algorithm. The determination of the optimal number of clusters (K) was consistently performed using the Elbow Method and Silhouette Score, yielding an optimal value of K=2. The clustering results successfully divided customers into two main groups: Cluster 0, dominated by users of low-value packages (Package 1 and 2), and Cluster 1, consisting of users of higher-value packages (specifically Package 5). This segmentation provides a basis for ICONNET to formulate differentiated service strategies and targeted marketing offers tailored to the characteristics and preferences of each customer segment, which directly supports operational efficiency and long-term business growth.

References

Sope, A. S. (2023). Analisis Strategi Pemasaran Terhadap Peningkatan Penjualan. JIBEMA: Jurnal Ilmu Bisnis, Ekonomi, Manajemen, Dan Akuntansi, 1(2), 87–100. https://doi.org/10.62421/jibema.v1i2.56

Afthoni, Rizqa, Mirza Hamdhani, Aprilia Fitri Karimah, Harry Patria, Jurusan Analitika Bisnis, and Fakultas Magister Manajemen Teknologi. 1 Seminar Nasional Teknik Dan Manajemen Industri Dan Call for Paper.

Azhari, F., & Ali, H. (2024). Peran Inovasi Produk, Strategi Pemasaran, dan Kualitas Layanan terhadap Peningkatan Kinerja Perusahaan. Jurnal Manajemen Dan Pemasaran Digital, 2(2), 72–81. https://doi.org/10.38035/jmpd.v2i2.146

Situmorang, Sintia. 2023. ‘Analisis Kinerja Algoritma Machine Learning Dalam Deteksi Anomali Jaringan’. Jurnal Matematika dan Ilmu Pengetahuan Alam 1(4). doi:10.59581/konstanta.v1i4.1722.

Homepage, Journal, Ahmad Roihan, Po Abas Sunarya, and Ageng Setiani Rafika. 2019b. 5 IJCIT (Indonesian Journal on Computer and Information Technology) IJCIT (Indonesian Journal on Computer and Information Technology) Pemanfaatan Machine Learning Dalam Berbagai Bidang: Review Paper.

Idris, Mohammad, Riza Ibnu Adam, Yulrio Brianorman, Rinaldi Munir, Dimitri Mahayana, and Sekolah Tinggi. 2022. ‘Kebenaran Dalam Perspektif Filsafat Ilmu Pengetahuan Dan Implementasi Dalam Data Science Dan Machine Leaning’. Jurnal Filsafat Indonesia 5.

Bagus, Ida, Suryadharma Santika, ) Ketut, Queena Fredlina, Putu Trisna, Hady Permana, ) Program, Studi Teknik Informatika, and Stmik Primakara. PENERAPAN DATA MINING UNTUK CLUSTERING PEMINAT LAYANAN ICONNET BERDASARKAN WILAYAH AREA BALI MENGGUNAKAN METODE K-MEANS.

Fattah, A. M. M., Voutama, A., Heryana, N., & Sulistiyowati, N. (2022). Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM. JURIKOM (Jurnal Riset Komputer), 9(5), 1669. https://doi.org/10.30865/jurikom.v9i5.5021

Downloads

Published

2025-11-21

Issue

Section

Articles